vasp.6.4.3 19Mar24 (build May 12 2024 01:18:22) complex MD_VERSION_INFO: Compiled 2024-05-11T23:28:39-UTC in mrdevlin:/home/medea/data/ build/svnuser/vasp6.4.3/202405112235/x86_64/src/src/build/std from git 20240511 2235 This VASP executable licensed from Materials Design, Inc. executed on Lin64 date 2024.09.13 08:19:14 running 64 mpi-ranks, on 1 nodes distrk: each k-point on 64 cores, 1 groups distr: one band on NCORE= 1 cores, 64 groups -------------------------------------------------------------------------------------------------------- INCAR: SYSTEM = (Cs2AgInCl6)4 (Fm-3m) ~ Cs2InAgCl6_mp-1096926_symmetrized.cif (VASP) PREC = Accurate ENCUT = 500.000 IBRION = -1 NSW = 0 ISIF = 2 NELMIN = 2 EDIFF = 1.0e-05 EDIFFG = -0.02 VOSKOWN = 1 NBLOCK = 1 NWRITE = 1 NELM = 900 METAGGA = MBJ LASPH = .TRUE. LMIXTAU = .TRUE. ALGO = Damped TIME = 0.2 ISPIN = 2 MAGMOM = 3*0 0.001 6*0 INIWAV = 1 ISTART = 0 NELMDL = 2 NBANDS = 75 ICHARG = 2 LWAVE = .FALSE. LCHARG = .FALSE. ADDGRID = .FALSE. ISMEAR = 1 SIGMA = 0.2 LREAL = .FALSE. LSCALAPACK = .FALSE. RWIGS = 2.35 1.44 1.34 0.99 NPAR = 64 POTCAR: PAW_PBE Cs_sv 08Apr2002 POTCAR: PAW_PBE In_d 06Sep2000 POTCAR: PAW_PBE Ag 02Apr2005 POTCAR: PAW_PBE Cl 06Sep2000 ----------------------------------------------------------------------------- | | | W W AA RRRRR N N II N N GGGG !!! | | W W A A R R NN N II NN N G G !!! | | W W A A R R N N N II N N N G !!! | | W WW W AAAAAA RRRRR N N N II N N N G GGG ! | | WW WW A A R R N NN II N NN G G | | W W A A R R N N II N N GGGG !!! | | | | For optimal performance we recommend to set | | NCORE = 2 up to number-of-cores-per-socket | | NCORE specifies how many cores store one orbital (NPAR=cpu/NCORE). | | This setting can greatly improve the performance of VASP for DFT. | | The default, NCORE=1 might be grossly inefficient on modern | | multi-core architectures or massively parallel machines. Do your | | own testing! More info at https://www.vasp.at/wiki/index.php/NCORE | | Unfortunately you need to use the default for GW and RPA | | calculations (for HF NCORE is supported but not extensively tested | | yet). | | | ----------------------------------------------------------------------------- POTCAR: PAW_PBE Cs_sv 08Apr2002 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 5 number of lm-projection operators is LMMAX = 13 POTCAR: PAW_PBE In_d 06Sep2000 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 6 number of lm-projection operators is LMMAX = 18 POTCAR: PAW_PBE Ag 02Apr2005 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 6 number of lm-projection operators is LMMAX = 18 POTCAR: PAW_PBE Cl 06Sep2000 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 ----------------------------------------------------------------------------- | | | ----> ADVICE to this user running VASP <---- | | | | You enforced a specific xc type in the INCAR file but a different | | type was found in the POTCAR file. | | I HOPE YOU KNOW WHAT YOU ARE DOING! | | | ----------------------------------------------------------------------------- PAW_PBE Cs_sv 08Apr2002 : energy of atom 1 EATOM= -555.6835 kinetic energy error for atom= 0.0019 (will be added to EATOM!!) PAW_PBE In_d 06Sep2000 : energy of atom 2 EATOM=-1576.8302 kinetic energy error for atom= 0.0036 (will be added to EATOM!!) PAW_PBE Ag 02Apr2005 : energy of atom 3 EATOM=-1037.2675 kinetic energy error for atom= 0.0052 (will be added to EATOM!!) PAW_PBE Cl 06Sep2000 : energy of atom 4 EATOM= -409.7259 kinetic energy error for atom= 0.0030 (will be added to EATOM!!) POSCAR: (Cs2AgInCl6)4 (Fm-3m) ~ Cs2InAgCl6_mp-1 positions in direct lattice No initial velocities read in exchange-correlation table for MBJ RHO(1)= 0.500 N(1) = 2000 RHO(2)= 100.500 N(2) = 4000 -------------------------------------------------------------------------------------------------------- ion position nearest neighbor table 1 0.250 0.250 0.250- 5 3.67 8 3.67 10 3.67 6 3.67 8 3.67 9 3.67 6 3.67 7 3.67 10 3.67 5 3.67 7 3.67 9 3.67 3 4.50 3 4.50 3 4.50 3 4.50 2 0.750 0.750 0.750- 6 3.67 8 3.67 10 3.67 5 3.67 8 3.67 9 3.67 5 3.67 7 3.67 10 3.67 6 3.67 7 3.67 9 3.67 3 4.50 3 4.50 3 4.50 3 4.50 3 0.000 0.000 0.000- 5 2.53 6 2.53 7 2.53 8 2.53 9 2.53 10 2.53 2 4.50 2 4.50 2 4.50 1 4.50 1 4.50 1 4.50 2 4.50 1 4.50 4 0.500 0.500 0.500- 5 2.66 6 2.66 7 2.66 8 2.66 9 2.66 10 2.66 5 0.756 0.244 0.244- 3 2.53 4 2.66 1 3.67 2 3.67 2 3.67 1 3.67 6 0.244 0.756 0.756- 3 2.53 4 2.66 2 3.67 2 3.67 1 3.67 1 3.67 7 0.244 0.244 0.756- 3 2.53 4 2.66 1 3.67 2 3.67 2 3.67 1 3.67 8 0.756 0.756 0.244- 3 2.53 4 2.66 2 3.67 2 3.67 1 3.67 1 3.67 9 0.244 0.756 0.244- 3 2.53 4 2.66 1 3.67 2 3.67 2 3.67 1 3.67 10 0.756 0.244 0.756- 3 2.53 4 2.66 2 3.67 2 3.67 1 3.67 1 3.67 LATTYP: Found a face centered cubic cell. ALAT = 10.3890257600 Lattice vectors: A1 = ( 0.0000000000, 5.1945128800, 5.1945128800) A2 = ( 5.1945128800, 0.0000000000, 5.1945128800) A3 = ( 5.1945128800, 5.1945128800, 0.0000000000) Analysis of symmetry for initial positions (statically): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a face centered cubic supercell. Subroutine GETGRP returns: Found 48 space group operations (whereof 48 operations were pure point group operations) out of a pool of 48 trial point group operations. The static configuration has the point symmetry O_h . Analysis of symmetry for dynamics (positions and initial velocities): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a face centered cubic supercell. Subroutine GETGRP returns: Found 48 space group operations (whereof 48 operations were pure point group operations) out of a pool of 48 trial point group operations. The dynamic configuration has the point symmetry O_h . Analysis of structural, dynamic, and magnetic symmetry: ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a face centered cubic supercell. Subroutine GETGRP returns: Found 48 space group operations (whereof 48 operations were pure point group operations) out of a pool of 48 trial point group operations. The overall configuration has the point symmetry O_h . Subroutine INISYM returns: Found 48 space group operations (whereof 48 operations are pure point group operations), and found 1 'primitive' translations ---------------------------------------------------------------------------------------- Primitive cell volume of cell : 280.3267 direct lattice vectors reciprocal lattice vectors 0.000000000 5.194512880 5.194512880 -0.096255416 0.096255416 0.096255416 5.194512880 0.000000000 5.194512880 0.096255416 -0.096255416 0.096255416 5.194512880 5.194512880 0.000000000 0.096255416 0.096255416 -0.096255416 length of vectors 7.346150565 7.346150565 7.346150565 0.166719272 0.166719272 0.166719272 position of ions in fractional coordinates (direct lattice) 0.250000000 0.250000000 0.250000000 0.750000000 0.750000000 0.750000000 0.000000000 0.000000000 0.000000000 0.500000000 0.500000000 0.500000000 0.756098260 0.243901740 0.243901740 0.243901740 0.756098260 0.756098260 0.243901740 0.243901740 0.756098260 0.756098260 0.756098260 0.243901740 0.243901740 0.756098260 0.243901740 0.756098260 0.243901740 0.756098260 ion indices of the primitive-cell ions primitive index ion index 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 ---------------------------------------------------------------------------------------- KPOINTS: Automatic mesh Automatic generation of k-mesh. Grid dimensions read from file: generate k-points for: 3 3 3 Generating k-lattice: Cartesian coordinates Fractional coordinates (reciprocal lattice) -0.032085139 0.032085139 0.032085139 0.333333333 0.000000000 0.000000000 0.032085139 -0.032085139 0.032085139 0.000000000 0.333333333 0.000000000 0.032085139 0.032085139 -0.032085139 0.000000000 0.000000000 0.333333333 Length of vectors 0.055573091 0.055573091 0.055573091 Shift w.r.t. Gamma in fractional coordinates (k-lattice) 0.000000000 0.000000000 0.000000000 Subroutine IBZKPT returns following result: =========================================== Found 4 irreducible k-points: Following reciprocal coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 0.333333 0.000000 0.000000 8.000000 0.333333 0.333333 0.000000 6.000000 -0.333333 0.333333 0.000000 12.000000 Following cartesian coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 -0.032085 0.032085 0.032085 8.000000 0.000000 0.000000 0.064170 6.000000 0.064170 -0.064170 0.000000 12.000000 ----------------------------------------------------------------------------- | | | W W AA RRRRR N N II N N GGGG !!! | | W W A A R R NN N II NN N G G !!! | | W W A A R R N N N II N N N G !!! | | W WW W AAAAAA RRRRR N N N II N N N G GGG ! | | WW WW A A R R N NN II N NN G G | | W W A A R R N N II N N GGGG !!! | | | | The number of bands has been changed from the values supplied in | | the INCAR file. This is a result of running the parallel version. | | The orbitals not found in the WAVECAR file will be initialized with | | random numbers, which is usually adequate. For correlated | | calculations, however, you should redo the groundstate calculation. | | I found NBANDS = 75. Now, NBANDS = 128. | | | ----------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- Dimension of arrays: k-points NKPTS = 4 k-points in BZ NKDIM = 4 number of bands NBANDS= 128 number of dos NEDOS = 301 number of ions NIONS = 10 non local maximal LDIM = 6 non local SUM 2l+1 LMDIM = 18 total plane-waves NPLWV = 157464 max r-space proj IRMAX = 1 max aug-charges IRDMAX= 28280 dimension x,y,z NGX = 54 NGY = 54 NGZ = 54 dimension x,y,z NGXF= 108 NGYF= 108 NGZF= 108 support grid NGXF= 108 NGYF= 108 NGZF= 108 ions per type = 2 1 1 6 NGX,Y,Z is equivalent to a cutoff of 12.22, 12.22, 12.22 a.u. NGXF,Y,Z is equivalent to a cutoff of 24.44, 24.44, 24.44 a.u. SYSTEM = (Cs2AgInCl6)4 (Fm-3m) ~ Cs2InAgCl6_mp-1 POSCAR = (Cs2AgInCl6)4 (Fm-3m) ~ Cs2InAgCl6_mp-1 Startparameter for this run: NWRITE = 1 write-flag & timer PREC = accura normal or accurate (medium, high low for compatibility) ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 2 spin polarized calculation? LNONCOLLINEAR = F non collinear calculations LSORBIT = F spin-orbit coupling INIWAV = 1 electr: 0-lowe 1-rand 2-diag LASPH = T aspherical Exc in radial PAW Electronic Relaxation 1 ENCUT = 500.0 eV 36.75 Ry 6.06 a.u. 13.39 13.39 13.39*2*pi/ulx,y,z ENINI = 500.0 initial cutoff ENAUG = 449.7 eV augmentation charge cutoff NELM = 900; NELMIN= 2; NELMDL= 2 # of ELM steps EDIFF = 0.1E-04 stopping-criterion for ELM LREAL = F real-space projection NLSPLINE = F spline interpolate recip. space projectors LCOMPAT= F compatible to vasp.4.4 GGA_COMPAT = T GGA compatible to vasp.4.4-vasp.4.6 LMAXPAW = -100 max onsite density LMAXMIX = 2 max onsite mixed and CHGCAR VOSKOWN= 1 Vosko Wilk Nusair interpolation ROPT = 0.00000 0.00000 0.00000 0.00000 Ionic relaxation EDIFFG = -.2E-01 stopping-criterion for IOM NSW = 0 number of steps for IOM NBLOCK = 1; KBLOCK = 1 inner block; outer block IBRION = -1 ionic relax: 0-MD 1-quasi-New 2-CG NFREE = 0 steps in history (QN), initial steepest desc. (CG) ISIF = 2 stress and relaxation IWAVPR = 10 prediction: 0-non 1-charg 2-wave 3-comb ISYM = 2 0-nonsym 1-usesym 2-fastsym LCORR = T Harris-Foulkes like correction to forces POTIM = 0.5000 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run SMASS = -3.00 Nose mass-parameter (am) estimated Nose-frequenzy (Omega) = 0.10E-29 period in steps = 0.13E+47 mass= -0.123E-26a.u. SCALEE = 1.0000 scale energy and forces NPACO = 256; APACO = 10.0 distance and # of slots for P.C. PSTRESS= 0.0 pullay stress Mass of Ions in am POMASS = 132.90114.82107.87 35.45 Ionic Valenz ZVAL = 9.00 13.00 11.00 7.00 Atomic Wigner-Seitz radii RWIGS = 2.35 1.44 1.34 0.99 virtual crystal weights VCA = 1.00 1.00 1.00 1.00 NELECT = 84.0000 total number of electrons NUPDOWN= -1.0000 fix difference up-down DOS related values: EMIN = 10.00; EMAX =-10.00 energy-range for DOS EFERMI = 0.00; METHOD = LEGACY ISMEAR = 1; SIGMA = 0.20 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details) IALGO = 53 algorithm LDIAG = T sub-space diagonalisation (order eigenvalues) LSUBROT= F optimize rotation matrix (better conditioning) TURBO = 0 0=normal 1=particle mesh IRESTART = 0 0=no restart 2=restart with 2 vectors NREBOOT = 0 no. of reboots NMIN = 0 reboot dimension EREF = 0.00 reference energy to select bands IMIX = 4 mixing-type and parameters AMIX = 0.40; BMIX = 1.00 AMIX_MAG = 1.60; BMIX_MAG = 1.00 AMIN = 0.10 WC = 100.; INIMIX= 1; MIXPRE= 1; MAXMIX= -45 Intra band minimization: WEIMIN = 0.0000 energy-eigenvalue tresh-hold EBREAK = 0.20E-07 absolut break condition DEPER = 0.30 relativ break condition TIME = 0.20 timestep for ELM volume/ion in A,a.u. = 28.03 189.17 Fermi-wavevector in a.u.,A,eV,Ry = 1.095502 2.070198 16.328681 1.200124 Thomas-Fermi vector in A = 2.231827 Write flags LWAVE = F write WAVECAR LDOWNSAMPLE = F k-point downsampling of WAVECAR LCHARG = F write CHGCAR LVTOT = F write LOCPOT, total local potential LVHAR = F write LOCPOT, Hartree potential only WRT_POTENTIAL= false ! write potential to hdf5 file LELF = F write electronic localiz. function (ELF) LORBIT = 0 0 simple, 1 ext, 2 COOP (PROOUT), +10 PAW based schemes Dipole corrections LMONO = F monopole corrections only (constant potential shift) LDIPOL = F correct potential (dipole corrections) IDIPOL = 0 1-x, 2-y, 3-z, 4-all directions EPSILON = 1.0000000 bulk dielectric constant LVACPOTAV = F vacuum potentials using an averaging scheme for the charge density VACPOTFLAT = 0.1000000 required flatness to determine vacuum potential Exchange correlation treatment: METAGGA = MBJ functional components XC_C = 1 coefficients multiplying the functional components LIBXC = F Libxc VOSKOWN = 1 Vosko Wilk Nusair interpolation LHFCALC = F Hartree Fock is set to LHFONE = F Hartree Fock one center treatment AEXX = 0.0000 exact exchange contribution Parameters of functionals: MBJ: CMBJ = 1.0000 CMBJA= -0.0120 CMBJB= 1.0230 CMBJE= 0.5000 Accuracy and mixing parameters for tau-dependent meta-GGA functionals: LMAXTAU = 6 LMIXTAU = T Van der Waals corrections IVDW = 0 specifies the selected vdW correction Linear response parameters LEPSILON= F determine dielectric tensor LRPA = F only Hartree local field effects (RPA) LNABLA = F use nabla operator in PAW spheres LVEL = F velocity operator in full k-point grid CSHIFT =0.1000 complex shift for real part using Kramers Kronig OMEGAMAX= -1.0 maximum frequency DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate RTIME = -0.100 relaxation time in fs (WPLASMAI= 0.000 imaginary part of plasma frequency in eV, 0.658/RTIME) DFIELD = 0.0000000 0.0000000 0.0000000 field for delta impulse in time Optional k-point grid parameters LKPOINTS_OPT = F use optional k-point grid KPOINTS_OPT_MODE= 1 mode for optional k-point grid Orbital magnetization related: ORBITALMAG= F switch on orbital magnetization LCHIMAG = F perturbation theory with respect to B field DQ = 0.001000 dq finite difference perturbation B field LLRAUG = F two centre corrections for induced B field LBONE = F B-component reconstruction in AE one-centre LVGVCALC = T calculate vGv susceptibility LVGVAPPL = F apply vGv susceptibility instead of pGv for G=0 Random number generation: RANDOM_GENERATOR = DEFAULT PCG_SEED = not used -------------------------------------------------------------------------------------------------------- Static calculation charge density and potential will be updated during run spin polarized calculation Conjugate gradient for all bands (Freysoldt, et al. PRB 79, 241103 (2009)) perform sub-space diagonalisation before iterative eigenvector-optimisation modified Broyden-mixing scheme, WC = 100.0 initial mixing is a Kerker type mixing with AMIX = 0.4000 and BMIX = 1.0000 Hartree-type preconditioning will be used using additional bands 86 reciprocal scheme for non local part use partial core corrections no Harris-corrections to forces use gradient corrections use of overlap-Matrix (Vanderbilt PP) Methfessel and Paxton Order N= 1 SIGMA = 0.20 -------------------------------------------------------------------------------------------------------- energy-cutoff : 500.00 volume of cell : 280.33 direct lattice vectors reciprocal lattice vectors 0.000000000 5.194512880 5.194512880 -0.096255416 0.096255416 0.096255416 5.194512880 0.000000000 5.194512880 0.096255416 -0.096255416 0.096255416 5.194512880 5.194512880 0.000000000 0.096255416 0.096255416 -0.096255416 length of vectors 7.346150565 7.346150565 7.346150565 0.166719272 0.166719272 0.166719272 k-points in units of 2pi/SCALE and weight: Automatic mesh 0.00000000 0.00000000 0.00000000 0.037 -0.03208514 0.03208514 0.03208514 0.296 0.00000000 0.00000000 0.06417028 0.222 0.06417028 -0.06417028 0.00000000 0.444 k-points in reciprocal lattice and weights: Automatic mesh 0.00000000 0.00000000 0.00000000 0.037 0.33333333 0.00000000 0.00000000 0.296 0.33333333 0.33333333 0.00000000 0.222 -0.33333333 0.33333333 0.00000000 0.444 position of ions in fractional coordinates (direct lattice) 0.25000000 0.25000000 0.25000000 0.75000000 0.75000000 0.75000000 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000 0.75609826 0.24390174 0.24390174 0.24390174 0.75609826 0.75609826 0.24390174 0.24390174 0.75609826 0.75609826 0.75609826 0.24390174 0.24390174 0.75609826 0.24390174 0.75609826 0.24390174 0.75609826 position of ions in cartesian coordinates (Angst): 2.59725644 2.59725644 2.59725644 7.79176932 7.79176932 7.79176932 0.00000000 0.00000000 0.00000000 5.19451288 5.19451288 5.19451288 2.53390146 5.19451288 5.19451288 7.85512430 5.19451288 5.19451288 5.19451288 5.19451288 2.53390146 5.19451288 5.19451288 7.85512430 5.19451288 2.53390146 5.19451288 5.19451288 7.85512430 5.19451288 -------------------------------------------------------------------------------------------------------- k-point 1 : 0.0000 0.0000 0.0000 plane waves: 7119 k-point 2 : 0.3333 0.0000 0.0000 plane waves: 7150 k-point 3 : 0.3333 0.3333 0.0000 plane waves: 7111 k-point 4 : -0.3333 0.3333 0.0000 plane waves: 7110 maximum and minimum number of plane-waves per node : 7150 7110 maximum number of plane-waves: 7150 maximum index in each direction: IXMAX= 13 IYMAX= 13 IZMAX= 13 IXMIN= -13 IYMIN= -13 IZMIN= -13 The following grids will avoid any aliasing or wrap around errors in the Hartre e energy - symmetry arguments have not been applied - exchange correlation energies might require even more grid points - we recommend to set PREC=Normal or Accurate and rely on VASP defaults NGX is ok and might be reduce to 54 NGY is ok and might be reduce to 54 NGZ is ok and might be reduce to 54 serial 3D FFT for wavefunctions parallel 3D FFT for charge: minimum data exchange during FFTs selected (reduces bandwidth) total amount of memory used by VASP MPI-rank0 69966. kBytes ======================================================================= base : 30000. kBytes nonl-proj : 17661. kBytes fftplans : 1429. kBytes grid : 14964. kBytes one-center: 311. kBytes wavefun : 5601. kBytes INWAV: cpu time 0.0001: real time 0.0004 Broyden mixing: mesh for mixing (old mesh) NGX = 27 NGY = 27 NGZ = 27 (NGX =108 NGY =108 NGZ =108) gives a total of 19683 points initial charge density was supplied: charge density of overlapping atoms calculated number of electron 84.0000000 magnetization 0.0010000 keeping initial charge density in first step -------------------------------------------------------------------------------------------------------- Maximum index for augmentation-charges 913 (set IRDMAX) -------------------------------------------------------------------------------------------------------- First call to EWALD: gamma= 0.271 Maximum number of real-space cells 3x 3x 3 Maximum number of reciprocal cells 3x 3x 3 FEWALD: cpu time 0.0012: real time 0.0013 --------------------------------------- Ionic step 1 ------------------------------------------- --------------------------------------- Iteration 1( 1) --------------------------------------- POTLOK: cpu time 0.0784: real time 0.0787 CMBJ = 1.0000 SETDIJ: cpu time 0.2869: real time 0.2878 TRIAL : cpu time 1.5452: real time 1.5529 CORREC: cpu time 0.0003: real time 0.0003 LOOP: cpu time 1.9141: real time 1.9232 eigenvalue-minimisations : 3008 total energy-change (2. order) : 0.2148053E+04 (-0.4377365E+04) number of electron 84.0000000 magnetization 0.0010000 augmentation part 84.0000000 magnetization 0.0010000 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 218.27460992 Ewald energy TEWEN = -4615.04387422 -Hartree energ DENC = -1635.33008905 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 512.30424545 PAW double counting = 5111.53062508 -3491.87699079 entropy T*S EENTRO = -0.02132585 eigenvalues EBANDS = -135.57376055 atomic energy EATOM = 6183.78950611 --------------------------------------------------- free energy TOTEN = 2148.05294610 eV energy without entropy = 2148.07427195 energy(sigma->0) = 2148.06005472 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 2) --------------------------------------- TRIAL : cpu time 2.3221: real time 2.3333 CORREC: cpu time 0.0003: real time 0.0003 CHARGE: cpu time 0.4597: real time 0.4620 LOOP: cpu time 2.7826: real time 2.7966 eigenvalue-minimisations : 4096 total energy-change (2. order) :-0.5884160E+03 (-0.5448945E+03) number of electron 84.0000008 magnetization 0.0551140 augmentation part 3.9836450 magnetization -0.0106956 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 218.27460992 Ewald energy TEWEN = -4615.04387422 -Hartree energ DENC = -1635.33008905 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 512.30424545 PAW double counting = 5111.53062508 -3491.87699079 entropy T*S EENTRO = -0.00333850 eigenvalues EBANDS = -724.00772250 atomic energy EATOM = 6183.78950611 --------------------------------------------------- free energy TOTEN = 1559.63697149 eV energy without entropy = 1559.64031000 energy(sigma->0) = 1559.63808433 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 3) --------------------------------------- POTLOK: cpu time 0.0349: real time 0.0350 CMBJ = 1.2242 SETDIJ: cpu time 0.2894: real time 0.2902 TRIAL : cpu time 0.4156: real time 0.4184 CORREC: cpu time 0.0003: real time 0.0003 CHARGE: cpu time 0.4500: real time 0.4523 LOOP: cpu time 1.1904: real time 1.1965 eigenvalue-minimisations : 0 total energy-change (2. order) : 0.7509757E+01 (-0.2963788E+11) number of electron 83.9999988 magnetization -0.0341295 augmentation part -16.9311222 magnetization -1.1624257 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 218.27460992 Ewald energy TEWEN = -4615.04387422 -Hartree energ DENC = -1605.19180749 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 2106442.51745932 PAW double counting = 34676.36419579 -33137.69981168 entropy T*S EENTRO = -0.01545108 eigenvalues EBANDS = -2106595.86021043 atomic energy EATOM = 6183.78950611 --------------------------------------------------- free energy TOTEN = 1567.14672880 eV energy without entropy = 1567.16217988 energy(sigma->0) = 1567.15187916 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 4) --------------------------------------- POTLOK: cpu time 0.0341: real time 0.0343 CMBJ = NaN SETDIJ: cpu time 0.2892: real time 0.2901 ----------------------------------------------------------------------------- | | | EEEEEEE RRRRRR RRRRRR OOOOOOO RRRRRR ### ### ### | | E R R R R O O R R ### ### ### | | E R R R R O O R R ### ### ### | | EEEEE RRRRRR RRRRRR O O RRRRRR # # # | | E R R R R O O R R | | E R R R R O O R R ### ### ### | | EEEEEEE R R R R OOOOOOO R R ### ### ### | | | | ERROR ROTDIA: Call to routine ZHEEV failed! Error code was 127 | | | | ----> I REFUSE TO CONTINUE WITH THIS SICK JOB ... BYE!!! <---- | | | -----------------------------------------------------------------------------