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1 Overview

MedeA Phonon is a computational tool for deriving vibrational properties of solids from first principles. This
section covers the underlying physical theorems and equations, provides a comprehensive overview on meth-
ods and numerical techniques.

• Optionally impose translational and rotational invariance on forces to improve accuracy.

• Modeling longitudinal optical branches close to LO/TO splitting with an approximate scheme based on
Born effective charges and dielectric constants for polar crystals.

• Analyze irreducible representations of phonon modes at the Γ-point as well as Infrared and Raman
activities.

• Debye-Waller factors and incoherent inelastic neutron scattering based on off-diagonal phonon density
of states

• Thermodynamic functions decomposed into contributions of individual atoms and polarization direc-
tions: internal energy E, free energy F, entropy S and heat capacity CV as a function of temperature.

• Intensity (form factors) of coherent neutron scattering in different Brillouin zones and different geome-
tries.

Doubly differential incoherent inelastic neutron scattering cross sections of one Phonon processes for mono-
crystals and of up to five Phonon processes for poly-crystals.

2 Background

A detailed knowledge of lattice vibrations is critical for the understanding and quantitative prediction of a
wide variety of physical properties of solids. The interpretation of optical, infrared, Raman and synchrotron
spectroscopic methods as well as neutron scattering experiments rely on an accurate theoretical approach
to lattice dynamics. The fundamental thermodynamic functions of internal and free energy, entropy, heat ca-
pacity as well as non-linear properties such as thermal expansion and heat conduction are to a considerable
extent determined by the vibrations of the constituent atoms in the lattice. Further phenomena such as elec-
trical resistivity of metals, superconductivity and the temperature dependence of optical spectra are governed
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by electron-Phonon coupling. Fortunately, the quantum theory of lattice dynamics is well developed and has
proven to be one of the most successful theories of solid state physics and therewith provides an impressive
reassurance of the validity and applicability of the concepts of quantum theory in general.

From a historical point of view, the fundamental theory of lattice dynamics was developed in the 1930’s and
was reviewed in the book of Born and Huang [1], which is still regarded as a standard textbook in the field. In
those early days, the main interest focused on general properties of the dynamical matrix, e.g. its symmetry
and analytical properties, but less emphasis was put on its underlying physical origin based on the interactions
of the constituent ions and electrons. The first approaches to theoretically determine phonon dispersion
relations were based on lattice-dynamical models with adjustable parameters to be fitted to experimentally
measured frequencies, e.g. from inelastic neutron scattering experiments, and were mainly used as a means
to interpolate between experimental data points. These model potentials either did not account for electronic
polarization at all, like in the force-constant model, Born-von Kármán model, Born-Mayer potentials for alkali
halides or Lennard-Jones potentials for noble gas crystals [1], or polarization effects were approximated by
electric dipoles generated by relative displacements of the shells of valence electrons relative to the ion
cores (shell models [2]). In addition, to tackle systems with highly anisotropic electron distributions as found
in covalently bonded crystals, alternative models have been developed, relying on angular forces (Keating
models [3]) or bond charges (bond charge model [4]). The predictive capabilities of these methods turned
out to be quite limited. Although experimental phonon dispersions are accurately reproduced close to the
data used for fitting - especially along high symmetry directions - predictions along lower-symmetry directions
frequently failed due to the lack of a rigorous description of the interactions among constituent atoms. The first
attempts to investigate the connections between the electronic structure and the dynamical properties were
made as late as in the early seventies and were based on dielectric matrices or the electron polarizability [5].

With the advent of density functional theory [6] and the progress with numerical methods for solving quantum
physical equations together with the emergence of more and more powerful computers made it feasible to
accurately describe the interatomic interactions in crystals and molecules based on quantum mechanics.
It is thus possible, nowadays, to calculate a large variety of properties of simple materials without relying
on input data from experiments. These so-called first-principles or ab-initio methods also revolutionized the
practical approaches to lattice dynamics and accurate theoretical phonon dispersion curves can be calculated
completely independent of any experimental knowledge.

Three different techniques for ab initio evaluation of vibrational properties have been developed, namely

• direct methods based on total energy changes or forces calculated for atoms displaced from their
equilibrium position,

• analytical calculation of force constants based on a perturbative expansion around the equilibrium
geometry,

• Fourier transform of the atomic velocity autocorrelation function obtained from a molecular dynamics
trajectory. [7]

The third option usually suffers from difficulties to reach equilibrium within reasonable simulation times, al-
though several technical tricks have been developed to address these problems (e.g. Nosé-Hoover thermo-
stat [8] and multiple signal classification (MUSIC) algorithm [9].

[1] Max Born and K Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1966.
[2] B Dick and A Overhauser, “Theory of the Dielectric Constants of Alkali Halide Crystals,” Physical Review 112, no. 1 (October 1,

1958): 90; W Cochran, “Theory of the Lattice Vibrations of Germanium,” Physical Review Letters 2, no. 12 (June 15, 1959): 495; U
Schröder, “A New Model for Lattice Dynamics (“Breathing Shell Model”),” Solid State Communications 4, no. 7 (1966): 347-349.

[3] P Keating, “Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure,”
Physical Review 145, no. 2 (May 13, 1966): 637.

[4] Richard Martin, “Dielectric Screening Model for Lattice Vibrations of Diamond-Structure Crystals,” Physical Review 186, no. 3
(October 15, 1969): 871. Werner Weber, “Adiabatic Bond Charge Model for the Phonons in Diamond, Si, Ge, and A-Sn,” Physical
Review B 15, no. 10 (May 15, 1977): 4789.

[5] Robert Pick, Morrel Cohen, and Richard Martin, “Microscopic Theory of Force Constants in the Adiabatic Approximation,” Physical
Review B 1, no. 2 (January 15, 1970): 910.

[6] Pierre Hohenberg and Walter Kohn, “Inhomogeneous Electron Gas,” Physical Review B 136, no. 3 (1964): 864-871.
[7] A Rahman, “Correlations in the Motion of Atoms in Liquid Argon,” Physical Review 136, no. 2 (October 19, 1964): A405.
[8] Glenn J Martyna, Michael L Klein, and Mark Tuckerman, “Nos𝑒 -Hoover Chains: the Canonical Ensemble via Continuous Dynamics,”

Journal of Physical Chemistry 97, no. 4 (1992): 2635.
[9] S Lawrence Marple, “Digital Spectral Analysis with Applications,” Englewood Cliffs, NJ, Prentice-Hall (1987). Jorge Kohanoff, Wanda

Andreoni, and Michele Parrinello, “Zero-Point-Motion Effects on the Structure of C 6 0,” Physical Review B 46, no. 7 (August 15, 1992):
4371. Jorge Kohanoff, “Phonon Spectra From Short Non-Thermally Equilibrated Molecular Dynamics Simulations,” Computational
Materials Science 2, no. 2 (1994): 221-232.
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The second option makes use of the fact that the lattice distortion associated with a phonon is a static
perturbation acting on the electrons, causing a linear response of the electron density which determines
the energy variation up to third-order (2𝜈 + 1 theorem [10]). The linear variation of the electron density is
determined in terms of the linear response of the Kohn-Sham orbitals applying first-order density functional
perturbation theory [11]. This method is assessed as quite accurate, efficient and elegant, however, requiring
highly specialized ab initio computer codes and considerable implementation efforts. For a review of the
formalism and implementation of density functional perturbation theory and its application see Baroni, de
Gironcoli, Corso & Giannozzi [12].

Direct methods (option (1) above) require the evaluation of total energy and forces for the equilibrium geome-
try as well as of several distorted geometries from which the force constant matrix can be assembled. Several
different techniques are subsumed under the title direct methods: in the early eighties, the first attempts for
ab initio lattice dynamics simulation were based on frozen phonon total energy calculations to derive ac-
curate phonon frequencies for specific high symmetry points in the Brillouin zone (e.g. Yin & Cohen [13]).
Phonon dispersion curves along specific high symmetry directions in reciprocal space were determined by
the method of interplanar force constants [14], where planes perpendicular to these directions are displaced
within an elongated supercell. Since these one-dimensional force constants between high-symmetry planes
are linear combinations of the three-dimensional interatomic force constants, the phonon dispersion can be
derived, in principle, for general directions [15].

The most general direct approach to lattice dynamics is based on the ab initio evaluation of forces on all
atoms produced by a set of finite displacements of a few atoms within an otherwise perfect crystal. The
perfect crystal environment has to be sufficiently large to ensure that interactions of the perturbation with
all its translational symmetry equivalent copies are small, which usually requires construction of suitable
supercells and atomic displacements, assembling force constant matrices from the calculated forces and
calculating phonon dispersion relations via Fourier transforms [16]. Phonon dispersion curves determined
from direct approaches are very accurate provided the studied crystal area (supercell) is larger than the
interaction range of all constituent atoms. The main advantages of direct methods consist in the fact that no
specialized ab initio codes are required, as long as forces can be derived, and that anharmonic effects can
be treated straightforwardly. The necessity to consider supercells in the case of simple crystal structure with
small unit cell extensions is one of the main drawbacks with regards to the linear response methods.

The MedeA Phonon module is based on the general direct approach to lattice dynamics and is designed to
work independently of a specific underlying code for deriving forces and total energies. However, together
with VASP, a fully automatic and highly parallel procedure is provided within MedeA.

3 Theory of Lattice Dynamics

In this section the basic theory of lattice dynamics is summarized and the essential analytical and numerical
aspects of the direct approach to the calculation of phonon dispersions are discussed in detail. Furthermore,
relevant equations for calculating form factors, thermodynamic functions, thermal displacements, and neutron
scattering cross-sections as implemented in the Phonon module are provided. For further details of the theory

[10] X Gonze and J-P Vigneron, “Density-Functional Approach to Nonlinear-Response Coefficients of Solids,” Physical Review B 39,
no. 18 (June 15, 1989): 13120.

[11] Stefano Baroni, Paolo Giannozzi, and Andrea Testa, “Green’s-Function Approach to Linear Response in Solids,” Physical Review
Letters 58, no. 18 (May 4, 1987): 1861. Paolo Giannozzi et al., “Ab Initio Calculation of Phonon Dispersions in Semiconductors,”
Physical Review B 43, no. 9 (March 15, 1991): 7231.

[12] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi, “Phonons and Related Crystal Properties From
Density-Functional Perturbation Theory,” Reviews of Modern Physics 73, no. 2 (July 6, 2001): 515.

[13] M Yin and Marvin L Cohen, “Theory of Lattice-Dynamical Properties of Solids: Application to Si and Ge,” Physical Review B 26, no.
6 (September 15, 1982): 3259.

[14] K Kunc and Richard Martin, “Ab Initio Force Constants of GaAs: a New Approach to Calculation of Phonons and Dielectric Proper-
ties,” Physical Review Letters 48, no. 6 (February 8, 1982): 406.

[15] S Wei and M Chou, “Ab Initio Calculation of Force Constants and Full Phonon Dispersions,” Physical Review Letters (1992). Siqing
Wei and M Chou, “Phonon Dispersions of Silicon and Germanium From First-Principles Calculations,” Physical Review B 50, no. 4
(July 15, 1994): 2221.

[16] Georg Kresse, J Furthm ller, and J rgen Hafner, “Ab Initio Force Constant Approach to Phonon Dispersion Relations of Diamond
and Graphite,” Europhysics Letters (EPL), 1995. W Frank, Christian Elsässer, and M Fähnle, “Ab Initio Force-Constant Method for
Phonon Dispersions in Alkali Metals,” Physical Review Letters 74, no. 10 (March 6, 1995): 1791. K Parlinski, ZQ Li, and Yoshiyuki
Kawazoe, “First-Principles Determination of the Soft Mode in Cubic ZrO 2,” Physical Review Letters 78, no. 21 (1997): 4063-4066.
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as well as applications in diverse research fields, we refer to several recent review articles [17].

3.1 Crystal Symmetry

The crystal structure is subject to space group symmetry

𝐺 = {ℎ1|𝜏1}, {ℎ2|𝜏2}, ..., {ℎ𝑔|𝜏𝑔} (1)

ℎ𝑖 are the point group symmetry elements and 𝜏𝑖 are partial translations. The point group of the crystal �̂�
contains all point symmetry elements ℎ𝑖. All atomic positions can be generated from non-equivalent sites
applying these symmetry operations. For each non-equivalent atom 𝑚 with site point group 𝑃𝜇𝑝𝑖 the space
group can be decomposed into left cosets with respect to 𝑃𝑚

𝐺 = {ℎ𝜇
1 |𝜏

𝜇
1 }𝑃𝜇 + {ℎ𝜇

2 |𝜏
𝜇
2 }𝑃𝜇 + ... + {ℎ𝜇

𝑔/𝑙|𝜏
𝜇
𝑔/𝑙}𝑃𝜇 (2)

Applying the generating symmetry elements {ℎ𝜇
1 |𝜏

𝜇
1 } all equivalent atom positions are found.

4 Basic Relations and Approximations

The ground state energy E of a crystal as a function of atom positions R(n,m) (where n denotes the unit cell
and m the atom index) can be written as a Shubham expansion in terms of atomic displacements around the
equilibrium positions

𝐸 (...𝑅(𝑛, 𝜇)...𝑅(𝑚, 𝜈)) = 𝐸0 +
1

2

∑︁
𝑛,𝜇,𝑚,𝜈

Φ(𝑛, 𝜇;𝑚, 𝜈)𝑈(𝑛, 𝜇)𝑈(𝑚, 𝜈) + 𝑂(𝑈3) (3)

𝐸0 is the equilibrium energy. Terms linear in U are absent due to the condition that at equilibrium all forces
on the atoms vanish. The elements of the atomic force constant matrix are defined by

Φ𝑖,𝑗(𝑛, 𝜇;𝑚, 𝜈) =

[︂
𝜕2𝐸

𝜕𝑅𝑖(𝑛, 𝜇)𝜕𝑅𝑗(𝑚, 𝜈)

]︂
0

(4)

with the gradients taken at the minimum energy configuration for which all first-order derivatives vanish. The
frequently used harmonic approximation consists in retaining in (3) only terms up to quadratic order in the
displacements.

Within the harmonic approximation the classical equations of motion for each atom are

𝑀𝜇�̈�(𝑛, 𝜇) =
∑︁

𝑛,𝜇,𝑚,𝜈

Φ(𝑛, 𝜇;𝑚, 𝜈)𝑈(𝑚, 𝜈) (5)

where 𝑀𝜇 is the atom mass of atom 𝜇. Solutions are required to exhibit Bloch-wave form because of trans-
lational invariance.

𝑈(𝑛, 𝜇) =
1

𝑀𝜇
𝑒(𝑘)𝑒𝑖𝑘𝑅(𝑛,𝜇)−𝑖𝜔𝑡 (6)

The k vectors are chosen to fulfill Born-von Karman periodic boundary conditions.

The equation of motion can thus be cast into the simple form

𝐷(𝑘)𝑒(𝑘, 𝑗) = 𝜔2(𝑘, 𝑗)𝑒(𝑘, 𝑗) (7)

where for each mode j the phonon frequencies 𝜔2(𝑘, 𝑗) are the eigenvalues and the polarization vectors
𝑒(𝑘, 𝑗) are the eigenvectors of the dynamical matrix 𝐷(𝑘), which has been introduced as the discrete Fourier
transform

[17] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi, “Phonons and Related Crystal Properties From
Density-Functional Perturbation Theory,” Reviews of Modern Physics 73, no. 2 (July 6, 2001): 515. G J Ackland, M C Warren, and
S J Clark, “Practical Methods in Ab Initio Lattice Dynamics,” Journal of Physics: Condensed Matter, 1997. Pasquale Pavone, “Old
and New Aspects in Lattice-Dynamical Theory,” Journal of Physics: Condensed Matter, 2001. K Parlinski, ZQ Li, and Yoshiyuki
Kawazoe, “First-Principles Determination of the Soft Mode in Cubic ZrO 2,” Physical Review Letters 78, no. 21 (1997): 4063-4066.
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𝐷(𝑘;𝜇, 𝜈) =
1√︀

𝑀𝜇𝑀𝜈

∑︁
𝑚

Φ(0, 𝜇;𝑚, 𝜈)𝑒𝑥𝑝 (2𝜋𝑖𝑘 (𝑅(0, 𝜇) −𝑅(𝑚, 𝜈))) (8)

The summation 𝑚 runs over all atoms of the crystal. The forces 𝐹 (𝑛, 𝜇) on all atoms generated by the
displacement 𝑈(𝑚, 𝜈) of atom 𝜈 can be written as

𝐹𝑖(𝑛, 𝜇) =
∑︁
𝑚,𝜇,𝑗

Φ𝑖,𝑗(𝑛, 𝜇;𝑚, 𝜈)𝑈𝑗(𝑚, 𝜈) (9)

which relates the generated forces with the force constant matrices and atomic displacements. This is the
central relation of the direct method.

The complete quantum mechanical description for a system of ions and electrons requires additional approxi-
mations. Since the nuclear mass is much larger than that of an electron, it is reasonable to consider the nuclei
in their equilibrium position while dealing with the electronic motion. In mathematical terms, this so-called
adiabatic (or Born-Oppenheimer) approximation yields a separation of the general Schrödinger equation into
one for the motion of nuclei and one for the electrons. The nuclear motion is determined by the potential field
generated by the average motion of the electrons and the corresponding nuclear Schrödinger equation yields
formally the same results as the classical theory. The above equations remain valid, however, with the exact
effective potential. The purely electronic Schrödinger equation can be solved within density functional theory.

4.1 Symmetry Properties of Force Constants

The atomic force constants exhibit certain symmetry properties related to the crystal symmetry. Because of
the translational invariance of the crystal, force constants depend only on the difference 𝑅(𝑛,𝑚) − 𝑅(𝑚,𝑛)
and satisfy the acoustic sum rule ∑︁

𝑛,𝜇,𝑛,𝜈

Φ(𝑛, 𝜇;𝑚, 𝜈) = 0 (10)

which expresses the invariance of the potential energy on uniform translations of the whole crystal.

Therefore, a force constant Φ(𝑚,𝜇, 𝑛, 𝜈) represents a bond between atoms 𝑚,𝜇 and 𝑛, 𝜈. The bond point
group 𝐵 = {𝑏1𝑏2...𝑏𝑏} leaves this specific bond invariant and its elements 𝑏𝑖 span a subgroup of the point
group of the crystal. The symmetry of force constants, therefore, is set by transformations by 𝑏𝑖 which reduces
the number of independent parameters. Furthermore, each force constant can be decoupled into a part 𝐴
determined exclusively by symmetry and a part 𝑃 which is dependent on potential strength. The potential
parameters contained in 𝑃 are no longer dependent on any other element. This decoupling allows the use of
fitting procedures on a minimal set of independent parameters. The crystal space group can be decomposed
with respect to the bond point group 𝐵

𝐺 = {ℎ(𝑏)
1 |𝜏 (𝑏)1 }𝐵 + {ℎ(𝑏)

2 |𝜏 (𝑏)2 }𝐵 + ... + {ℎ(𝑏)
𝑔/𝑙|𝜏

(𝑏)
𝑔/𝑙}𝐵 (11)

Therefore, knowing the symmetry of one force constant, all remaining equivalent ones can be created by
applying the generating symmetry elements {ℎ(𝑏)

𝑖 |𝜏 (𝑏)𝑖 }.

4.2 Supercell Force Constants for the Direct Method

The ab initio calculations for the direct approach are performed for a supercell constructed as a multiplication
of the original primitive cell with periodic boundary conditions. There are symmetry implications for the
force constants resulting from the supercell geometry. The symmetry elements of the supercell point group
𝑆 = {𝑠1, 𝑠2, ...𝑠𝑠} leave the supercell as parallelepiped (not as crystal) invariant. The point group symmetry
of the supercell crystallite �̂� consists of the common point symmetry elements of the supercell point group
𝑆 and the point group of the crystal �̂�, i.e. �̂� = 𝑆 ∩ �̂�. The supercell crystallite space group H (including
translations and partial translations) can be equal to the crystal space group 𝐺, or it can be a subgroup of
𝐺. In the second case, some equivalent atoms become non-equivalent, and site and bond point groups are
reduced to corresponding subgroups. As a consequence, the symmetry of phonon modes derived from these
supercell calculations might be reduced and degeneracy of modes may be decreased.
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The direct method for calculating vibrational properties starts with an optimization of the atom positions (and
lattice parameters) of the unperturbed supercell introduced in the previous paragraph. Any computational
method providing atomic forces is suitable for the direct approach, but usually first-principles methods are
employed. After the initial total energy minimization process, all forces should vanish, and the resulting
structure is the reference and starting point for all further steps. In order to obtain complete information on
all force constants, it is necessary to displace each non-equivalent atom of the supercell along three non-
equivalent directions, and to calculate for each of these perturbed supercells the forces on all other atoms
generated by this displacement. The non-equivalent atoms and directions are defined with respect to the
supercell crystallite space group H. Further reduction of the number of displacements is possible: if the site
point group of the atom is cubic, a single displacement along a single fourfold axis is adequate. If the site
point group is tetragonal, one displacement along the fourfold symmetry axis and one perpendicular to it are
sufficient.

The use of supercells with periodic boundary conditions rather than interaction shells has some conse-
quences on the definition of force constants. The displacement 𝑈(𝑚, 𝜈) of an atom (𝑚, 𝜈) reappears for
all atoms (𝑚 + 𝐿, 𝜈) in all images L of the supercell due to periodicity. 𝐿 = (𝐿𝑎, 𝐿𝑏, 𝐿𝑐) are the lattice
constant indices of the supercell. Thus, the displacement of a single atom (𝑚, 𝜈) in the original supercell
generates on atom (𝑛, 𝜇) a net force

𝐹𝑖(𝑛, 𝜇) = −
∑︁
𝐿

Φ𝑖,𝑗(𝑛, 𝜇;𝑚 + 𝐿, 𝜈)𝑈𝑗(𝑚, 𝜈) = −Φ
(Σ)
𝑖,𝑗 (𝑛, 𝜇;𝑚, 𝜈)𝑈𝑗(𝑚, 𝜈) (12)

where the cumulative force constant is defined as

ΦΣ
𝑖,𝑗(𝑛, 𝜇;𝑚, 𝜈)) =

∑︁
𝐿

Φ𝑖,𝑗(𝑛, 𝜇;𝑚 + 𝐿, 𝜈) (13)

and the summation L runs overall supercell images. In order to make sure that all neighbors of a given inter-
action shell are taken into account for constructing the dynamical matrix, the atom (𝑛, 𝜇) under consideration
is positioned at the center of an extended supercell, which has the same size as the original one but includes
all atoms on its surface planes, edges, and corners. The extended supercell, in general contains more atoms
than the conventional one. If the displaced atoms (𝑀 + 𝐿, 𝜈) for several 𝐿 are located at the same distance
from the considered atom (𝑛, 𝜇), i.e. if they are located at the surface of the extended supercell, the corre-
sponding force constant has to be scaled by the factor 1/𝑛𝑚, where 𝑛𝑚 is the number of equivalent atoms at
the surface. Thus, the supercell force constants are defined as

Φ
(𝑆𝐶)
𝑖,𝑗 (𝑛, 𝜇;𝑚, 𝜈) =

1

𝑛𝑚

∑︁
ΦΣ

𝑖,𝑗(𝑛, 𝜇;𝑚 + 𝐿, 𝜈) (14)

and the net force can be written as

𝐹𝑖(𝑛, 𝜇) = −
∑︁

𝑚,𝜈∈𝑆𝐶

Φ
(𝑆𝐶)
𝑖,𝑗 (𝑛, 𝜇;𝑚, 𝜈)𝑈𝑗(𝑚, 𝜈) (15)

where the summation is limited to atoms of the extended supercell. The supercell force constants may
have higher symmetry than the conventional ones, provided by the symmetry relations among the equivalent
surface atoms.

The above equation has to be solved in the direct method, yielding the supercell force constants from the
known forces and displacement variables. As stated in section Symmetry Properties of Force Constants for
force constants in general, also the supercell force constants can be decoupled into a matrix A determined
by symmetry and the matrix P of independent potential parameters. The net force is

𝐹 (𝑛,𝑚) = −
∑︁

𝑚,𝜈∈𝑆𝐶

𝐴(𝑛, 𝜇;𝑚, 𝜈)𝑃 (𝑆𝐶)(𝑛, 𝜇;𝑚, 𝜈)𝑈(𝑚, 𝜈)

= 𝐶(𝑛, 𝜇;𝑚, 𝜈)𝑃 (𝑆𝐶)(𝑛, 𝜇;𝑚, 𝜈)

(16)

where the matrix 𝐶 is defined as𝐶(𝑛, 𝜇;𝑚, 𝜈) = −
∑︁

(𝑚,𝜈)∈𝑆𝐶

𝐴(𝑛, 𝜇;𝑚, 𝜈)𝑈(𝑚, 𝜈)

The main equation of the direct method is cast into the simple global form

𝐹 = 𝐶 · 𝑃 (𝑆𝐶) ⇒ 𝑃 (𝑆𝐶) = 𝐶−1 · 𝐹 (17)
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Usually, the number of forces is larger than the number of independent parameters, and the system is over-
determined. Equation (17) is solved by an algorithm for the singular value decomposition of the sparse matrix
𝐶 [18]. All supercell force constants can be expressed in terms of the potential parameters 𝑃 (𝑆𝐶).

4.3 Translational-Rotational Invariance

The forces should satisfy automatically the translational-rotational invariance conditions guaranteeing that all
acoustic modes start at zero frequency at the G-point. Due to numerical errors of the forces as obtained
in actual ab initio calculations, this condition is not exactly fulfilled. It is possible, however, to enforce the
invariance conditions in the derivation of the force constants.

For the case of supercell force constants with an interaction range confined inside the supercell, the
translational-rotational invariance conditions are∑︁

(𝑚,𝜈)∈(𝑆𝐶)

Φ
(𝑆𝐶)
𝑖,𝑗 (𝑛, 𝜇;𝑚, 𝜈) = 0 (18)∑︁

(𝑚,𝜈)∈(𝑆𝐶)

[︁
Φ

(𝑆𝐶)
𝑖,𝑗 (𝑛, 𝜇;𝑚, 𝜈)𝑅𝑘(𝑚, 𝜈) − Φ

(𝑆𝐶)
𝑖,𝑗 (𝑛, 𝜇;𝑚, 𝜈)𝑅𝑗(𝑚, 𝜈)

]︁
= 0 (19)

where the summation is limited to the atoms of the extended supercell, 𝑅(𝑚,𝑛) are position vectors and 𝑖, 𝑗, 𝑘
are Cartesian indices. In the simple global form, the invariance conditions can be written as 𝑂 = 𝑀 · 𝑃 (𝑆𝐶),
where 𝑀 is a (18𝑛 × 𝑝) matrix. Here, 𝑛 is the number of atoms in the primitive unit cell, 𝑝 is the number of
potential parameters and 18 is the sum of 9 translational and 9 rotational equations. This equation may be
added to the main equation of the direct method and the resulting equations can be solved by singular value
decomposition. The 𝑏 factor specifies the strength of enforcement of the invariance conditions.(︂

𝐹
0

)︂
=

(︂
𝐶
𝛽𝑀

)︂
· 𝑃 (𝑆𝐶) (20)

4.4 Supercell Dynamical Matrix

The direct method yields supercell force constants from the forces and by discrete Fourier transform the
supercell dynamical matrix is obtained:

𝐷(𝑆𝐶)(𝑘;𝜇, 𝜈) =
1√︀

𝑀𝜇𝑀𝜈

∑︁
𝑚∈𝑆𝐶

Φ(𝑆𝐶)(0, 𝜇;𝑚, 𝜈)𝑒−2𝜋𝑖𝑘·(𝑅(0,𝜇)−𝑅(𝑚,𝜈))
(21)

Here, the atom (0,𝑚) is located at the center of the extended supercell and summation is limited to all
neighbors of this cell. The summation over images of the supercell is alcreated included in the supercell
force constant.

The supercell dynamical matrix becomes identical to the conventional dynamical matrix for all 𝑘 vectors if
the supercell is large enough such that the interaction range is confined inside. In this case, all phonon
frequencies are calculated exactly. If the interaction exceeds the extended supercell size, both dynamical
matrices are identical only for special reciprocal vectors 𝑘𝑠 fulfilling the condition

𝑒𝑥𝑝{−2𝜋𝑖𝑘𝑠 · 𝑎𝑆𝐶} = 1 𝑒𝑥𝑝{−2𝜋𝑖𝑘𝑠 · 𝑏𝑆𝐶} = 1 𝑒𝑥𝑝{−2𝜋𝑖𝑘𝑠 · 𝑐𝑆𝐶} = 1 (22)

where 𝑎𝑆𝐶 , 𝑏𝑆𝐶 and 𝑐𝑆𝐶 are the basis vectors of the extended supercell. For these special vectors 𝑘𝑖 the
phonon frequencies are calculated exactly. Furthermore, the accuracy of phonon frequencies mainly depends
on the mutual symmetries of the supercell and the wave vector. The precision of phonon frequencies for a
discrete wave vector 𝑘𝑖 can be assessed by considering the point groups �̂�, 𝑆 and �̂�𝑘𝑠 of the crystal space
group 𝐺, the supercell and the wave vector 𝑘𝑖, respectively. The accuracy is

Exact if 𝑆 = �̂� and �̂�𝑘𝑧 ⊆ 𝑆 (23)

High precision 𝑆 ⊂ �̂� and �̂�𝑘𝑧
⊆ 𝑆 (24)

[18] WH Press, SA Teukolsky, WT Vetterling, and BP Flannery, Numerical Recipes in FORTRAN Example Book: the Art of Scientific
Computing, Cambridge University Press, 1992.
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Low precision 𝑆 = �̂� and �̂�𝑘𝑧 ̸⊂ 𝑆 (25)

For wave vectors fulfilling the requirements for exact solutions, the phonon frequencies and degeneracy are
exactly calculated from the supercell. For wave vectors satisfying the requirement for high precision, the
supercell approach usually yields highly precise phonon frequencies but the exact mode degeneracy is not
guaranteed. As a consequence, modes along equivalent directions with respect to �̂� but non-equivalent
directions with respect to 𝑆 might have different frequencies and degeneracy. Modes for 𝑘𝑠 vectors fulfilling
the criterion for low precision suffer from the same deficiencies but in addition may also have poorer frequency
values, because the list of neighbors is far from complete. All intermediate phonon branches are interpolated
between these special vectors 𝑘𝑠. Supercells providing the maximal number of exact wave vectors are:
𝑛 × 𝑛 × 𝑛 for cubic, 𝑛 × 𝑛 ×𝑚 for tetragonal, 𝑛 × 𝑛 × 𝑛 for hexagonal (rhombohedral), and 𝑛 ×𝑚 × 𝑙 for
orthorhombic, monoclinic and triclinic symmetry, respectively. The shape of the supercell should be as close
as possible to a cube to obtain accurate frequencies for all directions; elongated supercells may be applied
to achieve high accuracy in the direction of elongation.

4.5 Phonon Dispersion and Polarization Vectors

The frequencies 𝑤2(𝑘, 𝑗) of phonon modes 𝑗 are calculated by diagonalization of the supercell dynamical ma-
trix for each wave vector 𝑘 along a specified path through the Brillouin zone, thus creating phonon dispersion
curves.

𝐷(𝑘) · 𝑒(𝑘, 𝑗) = 𝜔2(𝑘, 𝑗)𝑒(𝑘, 𝑗) (26)

The irreducible representations of all phonon modes at the 𝐺 point can be calculated, providing in addition
Raman and infrared activities of the modes. The complex polarization vectors satisfy the orthonormality
relations ∑︁

𝑒*𝑖 (𝑘, 𝑗;𝜇) · 𝑒𝑖(𝑘, 𝑗; 𝜈) = 𝛿𝑖,𝑗𝛿𝜇,𝜈 (27)∑︁
𝑒*𝑖 (𝑘, 𝑗;𝜇) · 𝑒𝑖(𝑘, 𝑗;𝜇) = 𝛿𝑖,𝑗 (28)

The polarization vectors 𝑒(𝑘, 𝑗; ) defined for the wave vector 𝑘 centered at the origin of reciprocal space differ
from the conventional polarization vector as defined for the wave vector 𝑘𝑡𝑎𝑢 pointing from the center of a
given Brillouin zone labeled by the reciprocal vector 𝜏 . Because of 𝑘 = 𝜏 + 𝑘𝑡𝑎𝑢 the relation between these
differently defined polarization vectors is

𝑒(𝑘, 𝑗;𝜇) = 𝑒(𝑘𝜏 , 𝑗;𝜇)𝑒𝑥𝑝(−2𝜋𝜏 · 𝑟𝜇) (29)

Using the polarization vectors, the displacements caused by a particular phonon and its intensity can be
calculated. Assuming amplitude 𝑄𝑘 and phase 0 ≤ Φ𝑘 ≤ 1 of the displacement wave, the displacements
𝑈(𝑛,𝑚) of atoms (𝑛, 𝜇) for a given wave vector 𝑘 and phonon branch 𝑗 are given by the equation

𝑈(𝑛, 𝜇) =
𝑄𝑘

2
√︀
𝑀𝜇

[︂
Re𝑒(𝑘, 𝑗;𝜇)𝑐𝑜𝑠 [2𝜋 (𝑘 ·𝑅(𝑛, 𝜇) − Φ𝑘)]−
Im𝑒(𝑘, 𝑗;𝜇)𝑠𝑖𝑛 [2𝜋 (𝑘 ·𝑅(𝑛, 𝜇) − Φ𝑘)]

]︂
(30)

The intensity of phonon modes is obtained from the form factors. The form factor projected on the wave
vector is defined as

𝐹 (𝑝)(𝑘, 𝑗) =
1

𝑘2

⎛⎝∑︁
𝜇𝑘

𝑘 · 𝑒(𝑘, 𝑗;𝜇)√︀
𝑀𝜇

⎞⎠2

(31)

However, the intensity of a phonon mode is represented by the simple form factors

𝐹 (𝑠)(𝑘, 𝑗) =
1

𝑘2

(︃∑︁
𝜇

𝑒(𝑘, 𝑗;𝜇)√︀
𝑀𝜇

)︃2

(32)

which may be applied to remove unessential phonon branches originating from backfolding, or to estimate
relative intensities of all modes in varying Brillouin zones.
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4.6 Phonon Density of States

The phonon density of states 𝑔(𝜔) provides the frequency distribution of normal modes and is obtained as a
histogram plot from

𝑔(𝜔) =
1

𝑛𝑑∆𝜔

∑︁
𝑘,𝑗

(𝜔 − 𝜔(𝑘, 𝑗)) where 𝛿Δ𝜔)(𝑥) =

{︂
1 Δ𝜔

2 < 𝑥 ≤ Δ𝜔
2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (33)

The summation covers all 𝑛 wave vectors homogeneously distributed in the first Brillouin zone and all phonon
branches. The frequency interval of the histogram is denoted ∆𝜔 and 𝑑 is the dimension of the dynamical
matrix (equal to the number of phonon branches and the number of degrees of freedom in the unit cell). The
phonon density of states is normalized ∫︁

𝑔(𝜔)𝑑𝜔 = 1 (34)

The partial phonon density of states provides the contribution of one specific atom 𝑚 vibrating along a par-
ticular Cartesian direction

𝑔𝑖,𝜇(𝜔) =
1

𝑛𝑑∆𝜔

∑︁
|𝑒𝑖(𝑘, 𝑗;𝜇)|2𝛿Δ𝜔 (𝜔 − 𝜔(𝑘, 𝑗)) (35)

satisfying the normalization condition (𝑑 being the number of degrees of freedom, again).∫︁
𝑔𝑖,𝜇(𝜔)𝑑𝜔 =

1

𝑑
(36)

The off-diagonal partial phonon density of state is defined as

𝑔𝑖𝑙,𝜇(𝜔) =
1

𝑛𝑑∆𝜔

∑︁
𝑘,𝑗

𝑒𝑖(𝑘, 𝑗;𝜇)𝑒*𝑙 (𝑘, 𝑗;𝜇)𝛿Δ𝜔 (𝜔 − 𝜔(𝑘, 𝑗)) (37)

where 𝑒𝑖(𝑘, 𝑗;𝜇) and 𝑒𝑙(𝑘, 𝑗;𝜇) are the i th and j th Cartesian components of the polarization vectors for particle
𝑚 and phonon frequency 𝜔(𝑘, 𝑗). The diagonal elements are the partial phonon density of states.

5 Thermodynamic Functions

The contribution of lattice vibrations to thermodynamic functions such as internal energy, free energy, entropy,
heat capacity, and thermal displacements are derived from the integrated phonon density of states. For each
thermodynamic function, the contributions of particular atoms and polarization directions can be separated
making use of partial phonon densities of states. This section provides a brief summary of the equations
involved. Since thermodynamic functions are sensitive to phonons of low frequencies, it is advised to check
for correct low and high-temperature limits. These limits are also summarized below.

5.1 Internal Energy

The internal energy of a crystal of N unit cells is given by 𝐸𝑡𝑜𝑡 = 𝑁𝐸 where E is the internal energy of the
unit cell in the harmonic approximation

𝐸 =
∑︁

𝐸𝑖,𝜇 (38)

𝐸𝑖,𝜇 =
1

2
𝑑

∫︁ ∞

0

𝑔𝑖,𝜇(𝜔)~𝜔𝑐𝑜𝑡ℎ
~𝜔

2𝑘𝐵𝑇
𝑑𝜔 (39)

Herein, 𝐸𝑖,𝜇 is the contribution of atom 𝜇 and direction 𝑖 to the internal energy, 𝑔𝑙,𝑢(𝑤) is the corresponding
partial phonon density of states, 𝑑 is the number of degrees of freedom in the unit cell, ~ is the Planck
constant, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature. The low and high-temperature limits are

lim
𝑇→0

𝐸𝑖,𝜇 =
1

2
𝑑

∫︁ ∞

0

𝑔𝑖,𝜇~𝜔𝑑𝜔 (40)

lim
𝑇→∞

𝐸𝑖,𝜇 = 𝑘𝐵𝑇 (41)
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5.2 Free Energy

The Helmholtz free energy of a crystal of 𝑁 unit cells at a given volume is given by 𝐴𝑡𝑜𝑡 = 𝑁𝐴, where 𝐴 is
the Helmholtz free energy of the unit cell in harmonic approximation

𝐴 =
∑︁

𝐴𝑖,𝜇

𝐴𝑖,𝜇 = 𝑑𝑘𝐵𝑇

∫︁ ∞

0

𝑔𝑖,𝜇(𝜔)𝑙𝑛

(︂
2𝑠𝑖𝑛ℎ

~𝜔
2𝑘𝐵𝑇

)︂
𝑑𝜔

(42)

𝐴𝑖,𝑚 is the contribution of atom 𝑚 and direction 𝑖 to the free energy. The low-temperature limit of the free
energy is equal to the mean energy of a given degree of freedom.

lim
𝑇→0

𝐴𝑖,𝜇 =
1

2
𝑑

∫︁
𝑔𝑖,𝜇(𝜔)~𝜔𝑑𝜔 (43)

5.3 Entropy

The entropy of the crystal is 𝑆𝑡𝑜𝑡 = 𝑁𝑆 and the entropy of the unit cell 𝑆 is described by

𝑆 =
∑︁
𝑖,𝜇

𝑆𝑖,𝜇 (44)

𝑆𝑖,𝜇 = 𝑑𝑘𝐵

∫︁ ∞

0

𝑔𝑖,𝜇

(︂
~𝜔

2𝑘𝐵𝑇

(︂
𝑐𝑜𝑡ℎ

(︂
~𝜔

2𝑘𝐵𝑇

)︂
− 1

)︂
− 𝑙𝑛(1 − 𝑒𝑥𝑝

(︂
~𝜔
𝑘𝐵𝑇

)︂)︂
𝑑𝜔 (45)

where 𝑆𝑖,𝜇 is the contribution of atom 𝑚 and direction 𝑖 to the entropy. The low-temperature limit of the
entropy is

lim
𝑇→0

𝑆𝑖,𝜇 = 0 (46)

5.4 Heat Capacity

Within the harmonic approximation the heat capacity at constant volume and at constant pressure are equal.
The heat capacity of the crystal is 𝐶𝑉,𝑡𝑜𝑡 = 𝐶𝑃,𝑡𝑜𝑡 = 𝑁𝐶, and the heat capacity of the unit cell 𝐶 is
represented in terms of contributions of atoms and directions 𝐶𝑖,𝑚 by

𝐶 =
∑︁
𝑖,𝜇

𝐶𝑖,𝜇 (47)

𝐶𝑖,𝜇 = 𝑑𝑘𝐵

∫︁
𝑔𝑖,𝜇(𝜔)

(︂
~𝜔

2𝑘𝐵𝑇

)︂2 𝑒𝑥𝑝

(︂
~𝜔
𝑘𝐵𝑇

)︂
(︂
𝑒𝑥𝑝

(︂
~𝜔
𝑘𝐵𝑇

)︂
− 1

)︂2 𝑑𝜔 (48)

The low and high-temperature limits are

lim
𝑇→0

𝐶𝑖,𝜇 = 0 (49)

lim
𝑇→∞

𝐶𝑖,𝜇 = 𝑘𝐵 (50)

5.5 Thermal Displacements, Debye-Waller Factor

Thermal vibrations have a considerable effect on neutron scattering data. The form factor describing diffrac-
tion scattering contains the Debye-Waller factor 𝑒𝑥𝑝[𝑊𝜇(𝑘)], where the argument 𝑊𝜇(𝑘)

𝑊𝜇(𝑘) =
1

2
(2𝜋𝑘) ·𝐵(𝜇)(2𝜋𝑘) (51)

is described in term of the 3x3 matrix 𝐵(𝜇) representing the static correlation function of displacements 𝑈(𝜇)
of atom 𝑚 from the equilibrium position
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𝐵𝑖𝑗(𝜇) = (𝑈𝑖(𝜇)𝑈𝑗(𝜇)) (52)

The symmetric matrix 𝐵(𝜇) represents the square mean displacements of an atom 𝑚, and is determined by
the off-diagonal partial phonon density of states

𝐵𝑖𝑙(𝜇) =
~𝑑

2𝑀𝜇

∫︁ ∞

0

𝑔𝑖𝑙,𝜇(𝜔)
1

𝜔
𝑐𝑜𝑡ℎ

~𝜔
2𝑘𝐵𝑇

𝑑𝜔 (53)

Debye-Waller factors are the main ingredient for analyzing cross sections for phonon creation in neutron
scattering experiments.

6 Neutron Scattering

There are coherent and incoherent contributions to neutron scattering depending on the properties of the
nuclei involved. To obtain sensible results, for each constituent nucleus some neutron scattering input data
are required: the coherent scattering length 𝑎𝑐𝑜ℎ(𝜇), the incoherent scattering cross section 𝜎𝑖𝑛𝑐𝑜ℎ(𝜇), and
the total scattering cross section for polycrystals 𝜎𝑡𝑜𝑡(𝜇). The main equations for obtaining neutron scattering
cross sections are summarized below.

6.1 Coherent Neutron Scattering

The doubly differential coherent scattering cross section for the creation of one phonon is given by the ex-
pression

𝑑2𝜎
(+)
𝑐𝑜ℎ

𝑑Ω𝑑𝐸
=

𝐾

𝐾0

∑︁
𝑗

∫︁
~𝐹 (𝑘, 𝑗)

2𝜔(𝑘, 𝑗)
(𝑛 (𝜔(𝑘, 𝑗) + 1) × (𝜅− 𝑘) × (𝜖− 𝜔(𝑘, 𝑗))) 𝑑𝜔 (54)

where the coherent form factor, also called dynamical structure factor, is defined as

𝐹 (𝑘, 𝑗) =

⃒⃒⃒⃒∑︁
𝛼𝑐𝑜ℎ(𝜇)𝑒𝑥𝑝(−𝑊𝜇(𝑘))

2𝜋𝑘 · 𝑒(𝑘, 𝑗;𝜇)√︀
𝑀𝜇

⃒⃒⃒⃒2
(55)

and

𝑛(𝜔(𝑘, 𝑗) + 1) =
𝑒𝑥𝑝 ~𝜔

𝑘𝐵𝑇

𝑒𝑥𝑝 ~𝜔
𝑘𝐵𝑇 − 1

𝜖 = 𝐸0 − 𝐸 𝜅 = 𝐾0 −𝐾 (56)

Here, 𝑒𝑥𝑝[𝑊𝜇(𝑘)] denotes the Debye-Waller factor (see section Entropy and 𝑎𝑐𝑜ℎ(𝑚) the coherent scattering
length. Neutron scattering spectra are sensitive to the direction of incidental and scattered neutron beams and
orientation of the monocrystal. This is taken into account in the equation above by the difference 𝜖 of energy
of incident neutrons 𝐸0 and scattered neutrons 𝐸, and by the neutron momentum change 𝜅 = 𝐾0−𝐾, where
𝐾0 indicates the direction of the incident neutron beam and 𝐾 the direction of scattered neutrons. Both types
of neutron scattering experiments, direct geometry (fixed energy of incident neutrons and spectrum given
as a function of the energy of scattered neutrons) and inverse geometry (energy of scattered neutrons fixed
and spectrum is shown as a function of energy of incident neutrons) may be simulated according to these
equations.

6.2 Incoherent Neutron Scattering on Monocrystals

The one-Phonon double differential incoherent neutron scattering cross section is calculated as a sum of
contributions from all atoms of the unit cell

𝜕2𝜎𝑖𝑛𝑐𝑜ℎ

𝜕Ω𝜕𝐸
=
∑︁ 𝜕2𝜎𝑖𝑛𝑐𝑜ℎ

𝜕Ω𝜕𝐸
(𝜇) (57)

The contribution of one atom 𝜇 then is

𝜕2𝜎𝑖𝑛𝑐𝑜ℎ

𝜕Ω𝜕𝐸
= 𝜎𝑖𝑛𝑐𝑜ℎ(𝜔)

𝐾

𝐾0

∑︁
𝑘,𝑗

~
2𝑀𝜇𝜔(𝑘, 𝑗)

(𝜅 · 𝑒(𝑘, 𝑗;𝜇))2 · 𝑛(𝜔(𝑘, 𝑗) + 1)𝑒−2𝑊𝜇(𝑘)𝛿(𝜖− 𝜔(𝑘, 𝑗)) (58)
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𝜎𝑖𝑛𝑐𝑜ℎ(𝜇) is a materials constant and denotes the incoherent scattering cross section for each atom 𝜇, and
all other quantities in this equation are explained in the previous section. In terms of the off-diagonal partial
phonon density of states this equation reads

𝜕2𝜎𝑖𝑛𝑐𝑜ℎ

𝜕Ω𝜕𝐸
= 𝜎𝑖𝑛𝑐𝑜ℎ(𝜇)

𝐾

𝐾0

∑︁
𝑘,𝑗

𝑑
~

2𝑀𝜇

∫︁
𝑛(𝜔(𝑘, 𝑗) + 1) · 𝑒−2𝑊𝜇(𝜅)

3∑︁
𝑖,𝑗=1

𝜅𝑖𝜅𝑙𝑔𝑖𝑙,𝜇(𝜔)𝛿(𝜖− 𝜔)𝑑𝜔 (59)

6.3 Incoherent Neutron Scattering on Polycrystalline Materials

For analyzing neutron scattering on polycrystalline materials contributions from both, incoherent and coherent
scattering are considered. Since the coherent contribution disregards the wave vector conversation law due to
orientational averaging, it is treated as effective incoherent scattering. For polycrystals, the double differential
scattering cross section can be expressed for one-Phonon as well as for multi-Phonon processes.

The n-Phonon orientationally averaged double differential neutron scattering cross section is written as a sum
of contributions from all atoms in the unit cell

𝜕2𝜎
(𝑎𝑣)
𝑖𝑛𝑐𝑜ℎ(𝑛)

𝜕Ω𝜕𝐸
=
∑︁ 𝜕2𝜎

(𝑎𝑣)
𝑖𝑛𝑐𝑜ℎ

𝜕Ω𝜕𝐸
(60)

The contribution of atom 𝜇 is

𝜕2𝜎
(𝑎𝑣)
𝑖𝑛𝑐𝑜ℎ(𝑛, 𝜇)

𝜕Ω𝜕𝐸
= 𝜎𝑡𝑜𝑡(𝜇)

𝐾

𝐾0
𝑒𝑥𝑝

(︁
−𝑊 (𝑎𝑣)

𝜇 (𝜔)
)︁ 1

𝑛!

(︂
~2𝜔2

2𝑀𝜇

)︂𝑛

·

·
∫︁ ∞

−∞
𝑓𝜇(𝜔1)𝑑𝜔1

∫︁ ∞

−∞
𝑓𝜇(𝜔2)𝑑𝜔2...

∫︁ ∞

−∞
𝑓𝜇(𝜔𝑛)𝑑𝜔𝑛𝛿(𝜖− 𝜔1 − 𝜔2 − ...− 𝜔𝑛)

(61)

where

𝑊 (𝑎𝑣)
𝜇 (𝜅) =

1

6
𝜅2𝑇𝑟 (𝐵(𝜇)) (62)

and the orientationally averaged Debye-Waller factor is

𝑓𝜇(𝜔) =
𝑑𝑒𝑥𝑝 ~𝜔

𝑘𝐵𝑇

3𝜔
(︁
𝑒𝑥𝑝 ~𝜔

𝑘𝐵𝑇 − 1
)︁ (𝑔𝑥,𝜇(𝜔) + 𝑔𝑦,𝜇(𝜔) + 𝑔𝑧,𝜇(𝜔)) (63)

7 LO/TO Splitting

Polar crystals exhibit splitting of infrared active optical modes into longitudinal and transversal modes at
the Γ-point (so-called LO/TO split). The frequency of LO modes is raised above those of the TO modes
as a consequence of the long-range part of the Coulomb interaction, i.e. the macroscopic electric field
arising from the displacements of entire ionic sublattices. This field breaks the Born-von K{‘a}rm{‘a}‘ n
periodic boundary conditions and leads to a non-analytical term of the dynamical matrix at the Γ-point. As a
consequence, without any further approximation the LO/TO mode splitting at the Γ-point cannot be treated
with the direct method and only the TO mode only is obtained.

Applying elongated supercells the phonon frequency at 𝐺 will still be degenerate, however, it is possible to
recover the 𝑘 → 0 limit of the LO branch by extrapolating the LO curve along the elongated direction from
𝑘𝜋0 to 𝑘 = 0.

As an alternative to this procedure, e.g. in case the elongation of the cell would raise the system size
beyond computational feasibility for the ab initio calculations, one may take into account the non-analytical
contribution of the dynamical matrix in an approximate form [19]. Introducing phenomenological charges in
the form of the Born effective charge tensor 𝑍*(𝜇) and the dielectric constant 𝜖∞, this approximate additional
term is written as

[19] Peter E Blöchl, “Projector Augmented-Wave Method,” Physical Review B 50, no. 24 (December 1994): 17953-17979.
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𝐷𝑀
𝛼,𝛽(𝑘;𝜇, 𝜈) = 𝐷𝛼,𝛽(𝑘;𝜇, 𝜈) + 4𝜋

𝑒2

𝑉 𝜖∞
√︀

𝑀𝛼𝑀𝛽

(𝑘 · 𝑍*(𝜇))𝛼(𝑘 · 𝑍*(𝜇))𝛽
|𝑘|2

×

×𝑒−2𝜋𝑖𝑔·(𝑟(𝜇)−𝑟(𝜇)) × 𝑑(𝑞)𝑒

(︂
−𝜋2

(︂
( 𝑘𝑥

𝜌𝑥
)
2
+
(︁

𝑘𝑦
𝜌𝑦

)︁2
+( 𝑘𝑧

𝜌𝑧
)
2
)︂)︂ (64)

where the damping factor 𝑑(𝑞) is

𝑑(𝑞) =

{︃ 1

2
+ 𝑐𝑜𝑠

[︃
𝜋

(︃√︀
𝑞21 + 𝑞22 + 𝑞23√︀
𝑏21 + 𝑏22 + 𝑏23

)︃𝑛]︃
if n ≥ 1

1

2
+ 𝑐𝑜𝑠

[︃
𝜋

(︃
1 −

√︀
𝑞21 + 𝑞22 + 𝑞23√︀
𝑏21 + 𝑏22 + 𝑏23

)︃𝑛]︃
if 0 ¡ n ¡ 1

(65)

In the non-analytical term the wave vector 𝑘 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is counted from the closest Brillouin zone center
given by the vector 𝑔, 𝑞 = (𝑞1, 𝑞2, 𝑞3) is the lattice vector in reciprocal lattice coordinates, and 𝐵 = (𝑏1, 𝑏2, 𝑏3)
is the lattice vector from the Brillouin zone center to the Brillouin zone surface in the direction specified by
𝑞. The volume of the primitive cell is denoted 𝑉 ; 𝑀𝑖 and 𝑟𝑖 are the atomic masses and positions within the
primitive cell. The index 𝑛 is the power of the interpolation function. It allows modeling of the longitudinal
phonon dispersion curve between the Brillouin zone center and the Brillouin zone surface. For 𝑛 ≥ 1 the
longitudinal dispersion curve is closer to the value of at the Brillouin zone center for most wave vectors,
except in the close vicinity of the Brillouin zone surface. The opposite behavior is obtained for 0 < 𝑛 < 1,
where the dispersion curve reaches the longitudinal phonon mode only quite close to the Brillouin zone
center.

The vector 𝜌𝑖 = 𝜌𝜅𝑖 is determined by the scalar quantity 𝜌 and the vector 𝜅𝑖, the wave vector distance from
the Brillouin zone center to the Brillouin zone surface. The macroscopic electric field range factor 𝜌 is a free
parameter that can further suppress the influence of the second term in Eq. (57). The fixed default value is
10.0, which eliminates the Gaussian damping factor from suppressing dispersion curves. The electric charge
conservation law must be satisfied, and that can be achieved either by setting appropriate parameters of the
Born effective charge tensor, or the program may take care of this by manipulating the charge tensor.
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