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1 Introduction

The classical methodology that describes inter- and/or intra-molecular interactions is called an interatomic
potential in the convention of materials scientists and solid-state physicists, or a forcefield (or force field) in
the convention of chemical and biological scientists. Empirical or classic potentials are a set of mathematical
functional forms that describe inter-atomic interactions.

For classical forcefield-based simulations (molecular dynamics and Monte Carlo methods), the total energy
E in the previous section is the sum of the potential energy U and the kinetic energy K as defined by the
equation:

𝐸 = 𝑈 + 𝐾 (1)

Molecular dynamics simulations utilize the above energy function to describe inter-atomic interactions. Forces
are derived from the potential energy:

𝐹𝑖 = −𝜕𝑈

𝜕𝑟𝑖
(2)

to integrate Newton’s equation of motion:

𝐹 = 𝑚𝑎 (3)

Monte Carlo simulation, on the other hand, does not need to consider forces nor kinetic energy, since the
influence of the kinetic energy is accounted for by the classical factorization of the partition function (see
chapter III.E. Monte Carlo methods). However, the potential energy of many configurations needs to be
evaluated in a reasonable computer time to build a statistically representative ensemble. This is the role
assigned to the forcefield (also referred to as molecular potential or interatomic potential). The forcefield
must predict the potential energy of the system as a function of atomic coordinates without having to solve
the Schr𝑜dinger equation.

The following sections describe some of the forcefields (or interatomic potentials) provided in the MedeA
Environment.
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2 Dispersion and Repulsive Energy

Dispersion energy is often the main source of intermolecular attractive forces, which accounts for the cohesion
of liquids. It is also often a significant part of the adsorption energy in microporous solids. Repulsion prevents
molecules from overlapping, as they would do in liquids in the presence of attractive forces alone.

2.1 Origin of Dispersion and Repulsion Energy

A complete treatment of dispersion energy includes interactions between fluctuating dipoles, fluctuating
quadrupoles, and higher moments of the electronic charge distribution. Also, dispersion energy not only
includes pairwise interactions (i.e. involving two nuclei) but also three-body interactions, i.e. between three
nuclei. In these contributions, the leading term (which corresponds to the interaction between fluctuating
dipoles) decreases with the sixth power of the distance separating the related nuclei:

𝑈𝑑𝑖𝑠𝑝 = −3

2

(︃
𝐸𝑖𝐸𝑗

𝐸𝑖 + 𝐸𝑗

𝛼𝑖𝛼𝑗

4𝜋𝜖0

1

𝑟6𝑖𝑗

)︃
(4)

where 𝛼𝑖 and 𝛼𝑗 are the polarisabilities of the atoms, 𝐸𝑖 and 𝐸𝑗 the energies of first electronic transition in
both atoms and 𝑟𝑖𝑗 the separation distance.

When fluctuating quadrupoles and higher moments are included, higher-order terms add to the expression
although they are often neglected. Three-body contributions amount to 5-10% of the interaction in liquids [4],
but they are generally not explicitly taken into account. These neglected terms are then implicitly taken into
consideration through the empirical calibration of effective dispersion parameters, using the general depen-
dence of the equation with separation distance. Determining dispersion parameters directly via quantum
mechanical calculations is challenging because this component of the interaction energy is difficult to obtain
with the desired accuracy.

The repulsive energy results from the overlap between electronic charge distributions and the Pauli exclusion
principle. Numerous empirical potentials have been proposed for repulsion, such as exponential 𝑒𝑥𝑝(−𝑏𝑟𝑖𝑗)
or power laws 𝑟−𝑛

𝑖𝑗 with 𝑛 ≥ 9.

2.2 Lennard-Jones (LJ) Potential

The most well-established expression of dispersion-repulsion energy between two atoms i and j (or more
generally, between two force centers) is the Lennard-Jones potential:

𝑈𝐿𝐽 = 𝑈𝑟𝑒𝑝 + 𝑈𝑑𝑖𝑠𝑝 = 4𝜖𝑖𝑗

(︃(︂
𝜎𝑖𝑗

𝑟𝑖𝑗

)︂12

−
(︂
𝜎𝑖𝑗

𝑟𝑖𝑗

)︂6
)︃

(5)

where 𝜎𝑖𝑗 is the separation distance for which attractive and repulsive terms are exactly opposite making the
Lennard-Jones interaction zero, and 𝜖𝑖𝑗 is the depth of the minimum interaction energy which corresponds
to a separation distance 𝑟𝑚𝑖𝑛 = 21/6𝜎𝑖𝑗 ≈ 1.125𝜎𝑖𝑗 . The 12th exponent of the repulsion, which was chosen
arbitrarily to minimize computational expenses, appears to account fairly well for the behavior of simple flu-
ids (Ar, Kr,. . . ) and molecular non-polar fluids with approximate spherical symmetry (methane, isopentane..,
etc.). This is the functional form selected in the forcefields OPLS-AA [5], UA-TraPPE [6], AUA [7] for instance.

[4] B M Axilrod and E Teller, “Interaction of the Van Der Waals Type Between Three Atoms,” Journal of Chemical Physics 11, no. 6
(1943): 299.

[5] William L Jorgensen, David S Maxwell, and Julian Tirado-Rives, “Development and Testing of the OPLS All-Atom Force Field on
Conformational Energetics and Properties of Organic Liquids,” Journal of the American Chemical Society 118, no. 45 (January 1996):
11225-11236.

[6] MG Martin and IJ Siepmann, “Transferable Models for Phase Equilibria 1. United-Atom Description of N-Alkanes,” Journal of Phys-
ical Chemistry B 102 (1998): 2569; MG Martin and IJ Siepmann, “Novel Configurational-Bias Monte Carlo Method for Branched
Molecules. Transferable potential for Phase Equilibria. 2. United-Atoms Description of Branched Alkanes,” Journal of Physical Chem-
istry B 103 (1999): 4508; Katie A Maerzke, Nathan E Schultz, Richard B Ross, and J Ilja Siepmann, “TraPPE-UA Force Field for
Acrylates and Monte Carlo Simulations for Their Mixtures with Alkanes and Alcohols,” Journal of Physical Chemistry B 113, no. 18
(May 7, 2009): 6415-6425.

[7] Nicolas Ferrando, Véronique Lachet, Jean-Marie Teuler, and Anne Boutin, “Transferable Force Field for Alcohols and Polyalcohols,”
Journal of Physical Chemistry B 113, no. 17 (April 30, 2009): 5985-5995.
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The Compass [8] and PCFF+ forcefields make use of a slightly different form of the Lennard-Jones potential,

with a
1

𝑟9
dependence for the repulsion energy. This functional form provides an improved representation of

the repulsive interaction at somewhat increased computationally effort because several additional multiplica-
tions are required to evaluate the ‘9/6’ form. (The 12ˆ{th} power of the separation being simply the square of
the 6ˆ{th} power.)

2.3 Combining Rules

The cross coefficients 𝜎𝑖𝑗 and 𝜖𝑖𝑗 depend on the pair of atoms considered. Although they may be calibrated
separately in some instances, they are generally derived from parameters 𝜎𝑖 and 𝜖𝑖 through the application
of combining rules (not be confused with the mixing rules used in classical thermodynamic models as they
apply between atoms, while mixing rules apply between molecules) such as the Lorentz-Berthelot rules used
in UA-TraPPE and AUA forcefields:

𝜎𝑖𝑗 =
𝜎𝑖𝑖 + 𝜎𝑗𝑗

2
(6)

𝜖𝑖𝑗 =
√
𝜖𝑖𝑖 · 𝜖𝑗𝑗

The rationale behind this rule being that it represents the diameter of dissimilar pairs in the limiting case of
non-interpenetrating hard spheres. A number of forcefields use a geometric mean expression for Lennard-
Jones interaction parameters. This is the case for PCC+ and OPLS-AA, for example. The rationale behind
such expressions for cross energetic parameters is the fact that short range interactions are decidedly non-
linear as a function of separation.

𝜖𝑖𝑗𝜎
6
𝑖𝑗 =

√︁
𝜖𝑖𝜎6

𝑖 𝜖𝑗𝜎
6
𝑗 (7)

This equation has been used in the combining rules of Kong [11] and Waldman & Hagler [12] and is also
employed in MedeA. Compared with the 𝜖 obtained from the Lorentz-Berthelot combining rules, it results in
lower 𝜖 for atoms with a substantial size difference but does not change significantly for atoms of equivalent
size. Alternative geometric combining rules for 𝜎 have been selected by Kong [11]:

𝜖𝑖𝑗𝜎
12
𝑖𝑗 =

𝜖𝑖𝜎
12
𝑖

213

⎡⎣1 +

(︃
𝜖𝑗𝜎

12
𝑗

𝜖𝑖𝜎12
𝑖

)︃1/13
⎤⎦13

(8)

and by Waldman & Hagler [12]:

𝜖𝑖𝑗 =

(︃
𝜖6𝑖 + 𝜖6𝑗

2

)︃1/6

(9)

both resulting in diameters close to equation (6). Compass and PCFF make use of the Waldman & Hagler [12]
combining rules, Eq. (7) and Eq. (9).

Combining rules are an important component of generic forcefields such as UA-TraPPE, AUA, OPLS-AA,
PCFF+, and the MedeA GIBBS and MedeA LAMMPS implementations of these methods.

3 Coulomb Potential

Coulomb potential is an essential part of many forcefields that describes Coulomb interactions between
particles carrying charges. On the basis of such discrete charge models, the electrostatic potential energy is
computed using Coulomb’s law:

[8] H Sun, “COMPASS: an Ab Initio Force-Field Optimized for Condensed-Phase -Overview with Details on Alkane and Benzene Com-
pounds,” Journal of Physical Chemistry B 102, no. 38 (September 1998): 7338-7364.

[11] Chang Lyoul Kong, “Combining Rules for Intermolecular Potential Parameters. II. Rules for the Lennard-Jones (12-6) Potential and
the Morse Potential,” Journal of Chemical Physics 59, no. 5 (1973): 2464.

[12] Marvin Waldman and A T Hagler, “New Combining Rules for Rare Gas Van Der Waals Parameters,” Journal of Computational
Chemistry 14, no. 9 (September 1993): 1077-1084.
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𝑈𝑒𝑙 =
1

4𝜋𝜖0

∑︁
𝑖,𝑗;𝑖<𝑗

𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

(10)

where the sum includes all possible pairs i, j of partial charges, 𝑟𝑖𝑗 is the separation distance and 𝜖0 =
8.85419 · 1012𝐶2𝑁−1𝑚−2.

Within different forcefields, charge can be represent by full valence charges (as in many Buckingham potential
descriptions) or by partial charges (where less than complete electron transfer is considered) for organic
valence forcefields. Variable charge forcefields determine atomic charge during the course of the simulation
based on the electrostatic environment encountered by a given atom.

For valence forcefields, the location of these partial charges coincides with atomic nuclei. This is the case
of the All Atom forcefields implemented in MedeA Forcefields: OPLS-AA [1]. Additional charges may be also
placed at other sites to provide an improved representation of electron pairs, for example. This is particularly
the case for small molecules like water, N 2, O 2, etc. [2]. The magnitude and location of these charges
may be determined based on quantum mechanical calculations, and may also be obtained by reference to
empirical properties such as the dipole and quadrupole moments, radial or angular distribution functions,
cohesive energy, and similar properties. The quantum mechanical calculation may be made in a dielectric
medium, to be more representative of the pure liquid when its dielectric constant is known.

3.1 Treating the slow-decaying 1/𝑟 term

Coulomb potential decays with 1/𝑟 which is still significant (˜5-15%) when two charges are alcreated sep-
arated by 10 Å. Simply cutting the interactions off after the long-range cutoff (usually 9-12 Å) can lead to
discontinuous energy and force descriptions.. For example, the blue curve below has an abrupt and sudden
change from 10.0 to 0.0 at the cutoff distance of 10.0 Å.

Therefore, one approach when employing the cutoff method is to shift the curve with the addition of a constant
so that the interaction at the cutoff distance is zero, shown in the orange curve above.

Alternatively, in simulations with periodic boundary conditions, a convergence acceleration method, such
as the Ewald method may be employed. The Ewald summation methods divides the Coulomb potential
into two parts: a short-range, real-space contribution within a finite cutoff, and a long-range, Fourier-space

[1] William L Jorgensen, David S Maxwell, and Julian Tirado-Rives, “Development and Testing of the OPLS All-Atom Force Field on
Conformational Energetics and Properties of Organic Liquids,” Journal of the American Chemical Society 118, no. 45 (January 1996):
11225-11236.

[2] William L Jorgensen, J Chandrasekhar, and J D Madura, “Comparison of Simple Potential Functions for Simulating Liquid Water,”
Journal of Chemical Physics 79 (1983): 926-935.
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contribution. This combination results high accuracy at reasonable computational effort when computing
long-range, Coulombic interactions for periodic systems.

An elaboration of the Ewald summation method is the particle-particle-particle-mesh (PPPM or P3M) sum-
mation method where particle positions are interpolated onto a mesh, and the potential is solved for this
mesh, furthering improving the calculation speed.

4 Valence Forcefields

Valence forcefields have pre-defined bonds, angles, and torsions. Valence forcefields in MedeA include:

• pcff/pcff+

• compass/compass+

• opls-aa/opls-aa+

• AUA/AUA+

• gaff

• trappe+

• clayff

• cvff aug

4.1 Standard Decomposition of the Potential Energy

For valence forcefields, the potential energy of a group of molecules is classically subdivided according to
two contributions:

𝑈𝑡𝑜𝑡 = 𝑈𝑖𝑛𝑡𝑒𝑟 + 𝑈𝑖𝑛𝑡𝑟𝑎 (11)

where 𝑈𝑖𝑛𝑡𝑒𝑟 is the intermolecular energy, also termed the external energy, i.e. the energy arising from
the interaction between distinct molecules, and 𝑈𝑖𝑛𝑡𝑟𝑎 is the intramolecular energy, also termed the internal
energy, which results from the interactions between the atoms belonging to the same molecule.

Classically, the intermolecular energy is divided into a sum of four terms, as a result of a perturbation expan-
sion of electronic charge distribution in the interacting molecules:

𝑈𝑖𝑛𝑡𝑒𝑟 = 𝑈𝑒𝑙 + 𝑈𝑝𝑜𝑙 + 𝑈𝑑𝑖𝑠𝑝 + 𝑈𝑟𝑒𝑝 (12)

where 𝑈𝑒𝑙 is the electrostatic potential energy, which originates from the Coulomb forces between the per-
manent components of the electronic charge distribution. 𝑈𝑝𝑜𝑙 is the polarization energy, always attractive,
which originates from the Coulombic interaction between the charge distribution induced in a molecule by the
electric field created by the permanent charge distribution of the surrounding molecules and the permanent
charge distribution of the surrounding molecules; 𝑈𝑑𝑖𝑠𝑝 is the dispersion energy, always attractive, which is
the Coulombic interaction between the fluctuating components of the charge distribution of the molecules.
Lastly, 𝑈𝑑𝑖𝑠𝑝 is the repulsive energy, which prevents the molecules from overlapping significantly, as a result
of the impossibility of electrons to occupy the same state.

The intramolecular 𝑈𝑖𝑛𝑡𝑟𝑎 energy is expressed as the sum of the following main contributions:

𝑈𝑖𝑛𝑡𝑟𝑎 = 𝑈𝑠𝑡𝑟 + 𝑈𝑏𝑒𝑛𝑑 + 𝑈𝑡𝑜𝑟𝑠 + 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 + 𝑈𝑛𝑏 (13)

where 𝑈𝑠𝑡𝑟 is the stretching energy, associated with the variations of bond length, 𝑈𝑏𝑒𝑛𝑑 is the bending
energy, arising from the variations of the angle formed by two successive chemical bonds 𝑈𝑡𝑜𝑟𝑠 is the torsion
energy caused by the variations of the dihedral angles formed by four successive atoms in a chain, 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟

is the improper torsion used to describe inversion barriers or out-of-plane deformation energies in planar
molecules, and 𝑈𝑛𝑏 is the non-bond energy resulting from the interaction between atoms (or electrostatic
charges/dipoles) separated by more than three chemical bonds.
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4.2 Units for Energy

The energy per molecule or bond for valence forcefields is often expressed per mole of substance, i.e. kJ/mol.
An alternative approach is to express energy in terms of the Boltzmann constant. For instance, the energy
attraction parameter 𝜖 of the Lennard-Jones potential is often given as 𝜖/𝑘𝐵 , which has the dimension of
temperature (K).

4.3 Inter-Molecular Energies

Dipole Moment and Quadrupole Moments

For a set of electrostatic charges 𝑞𝑖 with coordinates (𝑟𝛼𝑖), the dipole moment vector is defined as the first-
order moment of the charge distribution [3]:

𝜇𝛼 =
∑︁
𝑖

𝑞𝑖𝑟𝛼𝑖 (14)

The dipole moment is the magnitude of this vector. For instance, in the case of a molecule bearing opposite
charges q and -q separated by a distance d it is:

|𝜇| = 𝑞𝑑 (15)

The classical unit for dipole moment is the Debye (1 D = 3.334 10-30 C.m). The components of the quadrupole
tensor are defined as:

𝑄𝛼𝛽 =
1

2

∑︁
𝑖

𝑞𝑖(3𝑟𝛼𝑖𝑟𝛽𝑖 − 𝑟2𝛿𝛼𝛽) (16)

where 𝛼 and 𝛽 may be either of the axis x, y, or z, and 𝛿𝛼𝛽 is the Kronecker symbol. The quadrupolar moment
is:

|𝑄|2 = 𝑄2
𝑧𝑧 +

4

3

(︀
𝑄2

𝑥𝑦 + 𝑄2
𝑥𝑧 + 𝑄2

𝑦𝑧

)︀
+

1

3

(︀
𝑄𝑥𝑥 −𝑄𝑦𝑦

)︀2 (17)

In the case of a system of three aligned charges (-q, 2q, -q) separated by a distance d the main component
of the quadrupole tensor is:

𝑄𝑧𝑧 = −1

2
𝑞𝑑2 (18)

For instance, CO 2 electrostatics may be represented by three partial charges as shown below, where Q =
-14.3 10-40 Cm2.

Polarizability Energy

If a molecule is placed within an electric field E created by other molecules in the system, its internal charge
distribution will change so that an additional-or induced-dipole moment is created:

𝜇𝑃 = 𝛼𝑃𝐸 (19)

Where 𝛼𝑃 is the polarizability of the molecule, and E the electric field. As a general rule, polarizability
increases with the diameter of the electron cloud, i.e. with molecular size. Within a first-order approximation,
the electric field may be obtained by deriving:

𝐸 =
∑︁
𝑗

1

4𝜋𝜖0

𝑞𝑗
𝑟2𝑗

(20)

where the summation covers all the system charges apart from those of the molecule being considered, 𝑟𝑖
being the distance between the polarized molecule and charge 𝑞𝑖.

[3] JL Rivail, Eléments De Chimie Quantique à L’usage Des Chimistes, Savoirs actuels. (EDP Sciences, 2000). William C Swope,
Hans W Horn, and Julia E Rice, “Accounting for Polarization Cost When Using Fixed Charge Force Fields. I. Method for Computing
Energy,” Journal of Physical Chemistry B 114, no. 26 (July 8, 2010): 8621-8630.
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The interaction energy of the induced dipole moment with the electrostatic field provides the polarization
energy:

𝑈𝑝𝑜𝑙 = −1

2
𝛼𝑃𝐸

2 (21)

Potential energy calculations may be time-consuming when polarizability effects are significant because the
electric field determination must account of the influence of induced dipoles (the correction is often called
back polarizability).

As a general rule, the polarization energy is significant only when polar molecules or solids are present in the
system because otherwise, the electric field is not strong enough. In this case, non-polar molecules may also
contribute to polarization energy because their polarizability is significant. For instance, the polarizability of
methane (2.59 A3), which has no dipole moment, is greater than the polarizability of water (1.45 A3), which
has a large dipole moment.

The polarizability of many small molecules can be simply taken from experimental measurements. For com-
plex molecules, polarizability may be often determined from group contributions.

4.4 Intra-Molecular Energies

Internal conformation changes cannot be neglected in flexible molecules like alkanes or polymers. To con-
sider such changes in molecular simulation, we need to consider the internal potential energy of the molecule.
Conceptually, the simplest way to achieve this would be to sum the values for dispersion, repulsive and
Coulombic energy between the force centers belonging to the same molecule. However, this procedure in-
adequately reproduces major features like average bond angles and equilibrium molecular conformations.
Hence, the classical dispersion and repulsion potentials between neighboring atoms are replaced by more
appropriate terms, namely stretching, bending and torsion interactions. These successive terms correspond
to increases in the number of atoms involved, i.e. two in the case of stretching, three in bending and four in
torsion.

Stretching Energy

The stretching energy 𝑈𝑠𝑡𝑟 is the potential energy associated with the variation of bond length 𝑙 around its
mean value 𝑙0. In general it is described by a harmonic potential:

𝑈𝑠𝑡𝑟 =
1

2
𝑘𝑠𝑡𝑟 (𝑙 − 𝑙0)

2 (22)

where 𝑘𝑠𝑡𝑟 is the stiffness of the bond. At normal temperatures (say up to 700K), this term is neglected
in some forcefields like UA-TraPPE and AUA, because the related vibrations are of small amplitude and
simulations are sufficiently representative if bond lengths are set to mean values 𝑙0. A consequence of this
approximation is that the contribution of bond stretching to internal energy and heat capacity is neglected.

Bending Energy

The bending energy 𝑈𝑏𝑒𝑛𝑑 is the potential energy associated with the angle 𝜃 between two successive bonds.
As a consequence, it involves three atoms. It is generally treated using a harmonic potential of the same type
as bond stretching:

𝑈𝑏𝑒𝑛𝑑 =
1

2
𝑘𝑏𝑒𝑛𝑑 (𝜃 − 𝜃0)

2 (23)

where 𝜃0 is the angle of minimum potential energy, 𝑘𝑏𝑒𝑛𝑑 a spring constant. Both parameters are obtained
from molecular structure and infrared spectroscopy. In some cases, the variations of 𝜃 are sufficiently small
that they do not significantly influence simulation results. Under such circumstances, it may be appropriate to
impose constant bond angles and to neglect the associated potential energy. This is, for instance, the case
of CO2, which may be assumed to be linear (in this example 𝜃 = 180∘).

An alternative formula for bending energy is that from Toxvaerd [13]:

[13] Soren Toxvaerd, “Equation of State for Alkanes II,” Journal of Chemical Physics 107 (1997): 5197.
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𝑈𝑏𝑒𝑛𝑑 =
1

2
𝑘′𝑏𝑒𝑛𝑑 (𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0)

2 (24)

This expression may save computer time without introducing major changes compared to equation (23).
However, care must be taken that first-order equivalence requires a different spring constant than equation
(23).

Torsion Energy

Torsion energy is related to the dihedral angle 𝜑 defined from the coordinates of four successive atoms.

𝑈𝑡𝑜𝑟𝑠 =

𝑝∑︁
𝑛=0

𝑎𝑛𝑐𝑜𝑠𝑛𝜑 (25)

This series comprises three or four terms so that the torsion potential exhibits several minima between 0 and
360 ∘ [14]. A formally equivalent form of equation (25), which is used in the AUA potential for instance, is:

𝑈𝑡𝑜𝑟𝑠 =

𝑝∑︁
𝑛=0

𝑎𝑛 (𝑐𝑜𝑠𝑛𝜒)
𝑛 (26)

where the torsion angle 𝜒 is defined differently from the dihedral angle 𝜑, differing by 180 ∘. In the example
of linear alkanes, the minimal torsion energy occurs at a torsion angle 𝜑 of 180 ∘ (i.e. a trans conformation)
while two secondary minima occur at 60 ∘ and -60 ∘ (i.e. gauche conformations). The trans configurations
are thus favored over the gauche conformations.

Distant Neighbor Internal Energy

The distant neighbor (or non-bonded) intramolecular interaction 𝑈𝑑𝑛 corresponds to the usual pair interac-
tions between atoms that are not interacting through either stretching, bending or torsion, i.e. interactions
between atoms separated by more than three bonds.

Distant neighbor energy may include dispersion, repulsion, electrostatic and polarizability components, ex-
actly in the same way, as is the case between separated molecules. For minimally polarized molecules like
the alkanes, the distant neighbor interaction is generally reduced to the Lennard-Jones energy. In multi-
functional polar molecules, internal electrostatic forces may be also be considered. Alternatively, several
forcefields make use of an empirical factor. [15]

4.5 All Atom, United Atom and Anisotropic United Atom Forcefields

When representing polyatomic molecules, two approaches may be used to represent the dispersion and
repulsive forces:

• Assignment of a separate force center to each atom located on its nucleus. Such methods are referred
to as “All Atom” or AA.

• Assignment of a force center for a group of atoms, with groups such as:

– CH, CH2 or CH3. This technique, referred to as “United Atom”, can be divided into classical United
Atom (UA) and Anisotropic United Atom (AUA) depending on the position of the force centers.

– Multiple heavy atoms such as a phenyl ring. This approach is called “Mesoscale Simulation”.

[14] William L Jorgensen, JD Madura and Carol J Swenson, “Optimized Intermolecular Potential Functions for Liquid Hydrocarbons,”
Journal of the American Chemical Society 106 (1984): 6638.

[15] Nicolas Ferrando, V𝑒ronique Lachet, Jean-Marie Teuler, and Anne Boutin, “Transferable Force Field for Alcohols and Polyalcohols,”
Journal of Physical Chemistry B 113, no. 17 (April 30, 2009): 5985-5995.
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All Atom

The advantage of All Atom models is that they give a good account of molecular geometry and structure.
The disadvantage is that they require greater computer time because of the large number of force centers,
bending angles and torsion angles involved.

United Atom

United Atom methods generally neglect the hydrogen atoms other than those involved in polar groups while
other atoms such as carbon, oxygen and sulfur are represented by separate force centers. The separation
distances of equations (5) and (27) are then counted between the nuclei of these major atoms, as if hydrogen
atoms did not exist. The influence of hydrogen atoms is considered through the parameterization of potential
parameters. For instance, the Lennard-Jones diameter 𝜎 assigned to CH2 or CH3. United Atoms is somewhat
larger than the diameter of carbon in All Atom methods. United Atom methods are often used for complex
molecules because, with only one-third or one-quarter the number of force centers, they need 5-10 times less
computer time than All Atom methods.

Anisotropic United Atom

To take better stock of the influence of hydrogen atoms in United Atom potential, the force center may be
shifted to an intermediate position between the major atom and the related hydrogen atoms [16]. In this
approach, referred to as “Anisotropic United Atom” or AUA, the CH2 force center is thus located on the
external bisector of the C-C-C angle and the CH3 force center is located on the C-C axis. The distance from
the force center to the major atom is a parameter specific to the group under consideration. The separation
distances in equations (5) and (27) are then counted between these force centers. The positions of the
atomic nuclei are constructed in exactly the same way as with classical United Atom models, with the same
bending and torsion potential, here shown for a CH3 group (left) and a CH2 group (right).

4.6 Mesoscale Forcefields

Combining multiple atoms in “beads” has the advantage that the number of centers for which interactions
must be calculated is further reduced compared to all atom or united atom force fields. Since the vibrations
of hydrogen atoms are also the fastest movements in a molecule, additionally the elimination of explicit
hydrogen atoms in mesoscale dynamics simulations means, that the time step in the numerical integration
of the equations of motion that underlie molecular dynamics can be substantially larger. Hence, mesoscale
simulations calculations access length and time scales that cannot be reached with all atom or united atom
force fields, albeit with a reduction in atomic detail..

[16] Soren Toxvaerd, “Molecular Dynamics Calculation of the Equation of State of Alkanes,” Journal of Chemical Physics 93, no. 6
(1990): 4290. Soren Toxvaerd, “Equation of State for Alkanes II,” Journal of Chemical Physics 107 (1997): 5197.
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5 Non-valence Forcefields (Interatomic Potentials)

Non-valence forcefileds, or interatomic potentials, do not have pre-defined bonds, angles, and torsions. In-
stead, all intra-molecular interactions are included in the inter-molecular interactions.

Typically an interatomic potential is designed and parameterized to describe one type of chemical bonding.
Over time, this has led to several categorizations of potentials based on the type of bonding for which they are
applicable: Buckingham for ionic bonding, Lennard–Jones (LJ) potentials for dispersions and van der Waals
(vdW), Tersoff potentials for covalent bonding, and the embedded atom method (EAM) for metallic bonding
are well-documented examples. Broadly, such interatomic potentials may be considered reactive potentials
as they allow the rearrangement of atoms with the evolution of time.

Some interatomic potentials in MedeA include:

• Buckingham

• EAM/MEAM

• Stillinger-Weber

• Tersoff

• Streitz-Mintmire

• ReaxFF

• COMB

• SNAP

• NNP

5.1 Units for Energy

The energy per atom or formula unit for interatomic potentials is often expressed in eV.

5.2 Buckingham Potential

The Buckingham (also known as exp-6) potential is based on an exponential repulsion term and a disper-

sion term in
1

𝑟6
. This functional form is more flexible and may provide a more accurate description of fluid

behavior [9] or of cation location in zeolites [10]. It is available in MedeA under the form:

𝑈𝑒𝑥𝑝−6 = 𝑈𝑟𝑒𝑝 + 𝑈𝑑𝑖𝑠𝑝 = 𝐴𝑖𝑗𝑒𝑥𝑝

(︂
𝑟𝑖𝑗
𝜌𝑖𝑗

)︂
− 𝐶𝑖𝑗

𝑟6𝑖𝑗
(27)

Combined with a Coulomb potential,
𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

, this becomes a well-established potential for describing ionic

solids. Charges on atoms are usually full charges (e.g. 4+ for Si and 2- for O) for Buckingham potentials.

5.3 Embedded Atom Method (EAM) Potential

Simulations for metallic systems often employ the embedded atom model (EAM) description [17] where the
energy of the system is represented by both two-body and electron density-related terms.

[9] Jeffrey R Errington and Athanassios Z Panagiotopoulos, “Phase Equilibria of the Modified Buckingham Exponential-6 Potential From
Hamiltonian Scaling Grand Canonical Monte Carlo,” Journal of Chemical Physics 109, no. 3 (1998): 1093.

[10] Angela Di Lella, N Desbiens, Anne Boutin, I Demachy, Philippe Ungerer, et al., “Molecular Simulation Studies of Water Physisorption
in Zeolites,” Physical Chemistry Chemical Physics 8, no. 46 (2006): 11.

[17] Murray Daw and M Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in
Metals,” Physical Review B 29, no. 12 (June 1984): 6443-6453.
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𝑈𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐 =

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑉 (𝑟𝑖𝑗) +

𝑁∑︁
𝑖=1

𝐹 (𝜌𝑖) (28)

𝜌𝑖 =

𝑁∑︁
𝑗=1

𝜑(𝑟𝑖𝑗)

𝑈𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐 is the potential energy, 𝑖 and 𝑗 indicate each of the N atoms in the system, and 𝑟𝑖𝑗 is their interatomic
separation. 𝑉 (𝑟𝑖𝑗) is a pairwise potential, 𝐹 (𝜌𝑖) is the embedding function which depends on the electron
density experienced by a given atom, and 𝜑(𝑟𝑖𝑗) is an additional pairwise function, which represents the
electron density at any atomic site based on its environment.

Modified EAM (MEAM)

The MEAM potential [18] is an extension to the original EAM potentials which adds angular forces. It is thus
suitable for modeling metals and alloys with fcc, bcc, hcp and diamond cubic structures, as well as covalently
bonded materials like silicon and carbon.

EAM and MEAM potentials do not include charges and therefore do not have the Coulomb term.

Note: In these potentials, the atomic masses are defined for each atom type within the files containing
the interaction parameters. Hence changing, for example, the mass of an atom type in the builder remains
ineffective in subsequent LAMMPS runs. If simulations are desired with different isotopes (masses) for the
same chemical element, then different atom types have to be specified in the .frc files.

5.4 Stillinger-Weber Potential

The simulation of semiconducting materials has led to the development of potential forms that can repre-
sent both bond angle deformation and the changing coordination of atoms. Here the simulated material
possesses considerable covalent character, favoring the potential form typified by covalent descriptions, but
additionally, there is interest in surface restructuring and additional bonding subtleties, prompting interest in
the development of potentials able to handle variation in coordination numbers. The Stillinger & Weber [19]
potential is an example of such potential combining elements of the EAM approach with the deformation from
standard bond lengths employed in the covalent potential. The Stillinger-Weber potential form is summarized
by Equations (29) - (31), where 𝐴, 𝜖,𝐵, 𝜎, 𝑝, 𝑞, 𝑎 and 𝜆 are adjustable potential parameters, there being 8
such parameters for each distinct atom type covered by the potential.

𝐸 =
∑︁
𝑖𝑗

𝑉2(𝑅𝑖𝑗) +
∑︁
𝑗𝑘

𝑉3 (𝑅𝑖𝑗 , 𝑅𝑖𝑘, 𝜃𝑖𝑗𝑘) (29)

𝑉2 = 𝐴𝜖

(︂
𝐵𝑖𝑗

(︂
𝜎

𝑟𝑖𝑗

)︂𝑝

−
(︂

𝜎

𝑟𝑖𝑗

)︂𝑞

𝑒𝑥𝑝

(︂
𝜎

𝑟𝑖𝑗 − 𝛼𝜎

)︂)︂
(30)

𝑉3 = 𝜆(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0)2𝑒𝑥𝑝

(︂
𝜆𝜎

𝑟𝑖𝑗 − 𝑎𝜎

)︂
𝑒𝑥𝑝

(︂
𝜆𝜎

𝑟𝑖𝑘 − 𝑎𝜎

)︂
(31)

As can be seen from Equation (29) the essential form of the Stillinger-Weber potential is the summation
of two-body interactions, across all pairs of atoms in the system, augmented with three-body terms, which
encompass all triplets of atoms in the system. Both the two-body term (30) and the three-body term, Eq. (31)
are damped by exponential functions according to the separation of the atoms involved in the interaction,
which implicitly incorporates an effect the system density on the potential. This damping term also makes it
possible to truncate interactions to zero at a separation distance governed by the 𝑎 parameter for both two-
body and three-body terms. Additionally, the Stillinger-Weber potential does not require fixed connectivity for
the constituent atoms in the system, as the sums of Eq. (29) extend to cover all possible pairs and triplets of
atoms within the system.

[18] Baskes, Phys Rev B, 46, 2727-2742 (1992).
[19] Frank H Stillinger and Thomas A Weber, “Computer Simulation of Local Order in Condensed Phases of Silicon,” Physical Review

B 31, no. 8 (1985): 5262-5271.
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Stillinger-Weber does not include charges and therefore does not have the Coulomb term.

5.5 Tersoff Potential

Another well-established potential for covalent systems is the Tersoff potential.[#40 tersoff] The Tersoff de-
scription incorporates a “bond order” component, a measure of the local bonding state, which can regulate
the strength of a bond according to its local environment. The bond order term includes many-body inter-
actions and scales the attractive term thus allowing the breaking of existing bonds and the formation of new
bonds. In its simplest form, Tersoff potential has the following terms:

𝐸 =
∑︁
𝑖𝑗

𝐸𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗 * 𝐸𝐴(𝑟𝑖𝑗) (32)

where 𝐸𝑅 and 𝐸𝐴 are the repulsive and attractive terms, respectively, and 𝑏𝑖𝑗 is the bond order term which
takes the form:

𝑏𝑖𝑗 = (1 + 𝛽𝑛𝜁𝑛𝑖𝑗)
−

1

2𝑛
(33)

where 𝛽 is a scaling factor and 𝜁 includes coordination and angular terms.

Tersoff does not include charges and therefore does not have the Coulomb term.

6 Tabulated Potentials

Tabulated data can be used in lieu of an analytical expression for a potential. Tabulated potentials are useful
for situations in which analytical potentials are unknown or are more computationally expensive to evaluate
compared to looking up values in a table. One common application of tabulated potentials is for mapping
atomistic energies and forces to the interactions between corresponding coarse-grained particles.

When defining a tabulated potential for bonds, angles, torsion, or non-bonded interactions, minimum and
maximum values for the distance or angle variable must be specified. Typically, the intermediate values are
specified in regular intervals, but non-uniform intervals can also be specified. The tabulated potential can
then be interpolated by the compute engine in multiple ways and is also subject to standard considerations
such as non-bond cutoff distances for evaluating pairwise interactions. It is possible for compute engines to
treat the provided tabulated potential in the following ways:

• A lookup table that finds the nearest table entry to the desired distance or angle.

• Perform linear interpolation between the two nearest table entries for the desired distance or angle.

• Fit cubic splines to the tabulated potential.

Thus for the same tabulated potential data, it is possible for a compute engine to calculate different en-
ergies or forces for an interaction based on the style in which the tabulated potential data is interpolated.
Accordingly, care must be taken so that a tabulated forcefield is interpolated in the same manner used during
parameterization. If it is unclear which method of interpolation is most appropriate for a given forcefield, a
sensitivity analysis can be carried out to assess the impact of interpolation choice on the performance of the
forcefield.

7 Variable Charge Reactive Potentials

The obvious limitation with the above scheme of development (EAM for metals, Tersoff/SW for covalent
materials, and Buckingham for ionic solids) is that none of these methods can seamlessly model complex
bonding environments, such as those that occur in a heterogeneous interface between dissimilar materials.
This limitation has been overcome by several advances in potential development. While the goal of a universal
method applicable to all bond types has not yet been realized, significant progress has been made based on
the notion of self-consistent variable charge equilibration.
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While the analytical bond order formalism has the demonstrated flexibility to model many systems, the obvi-
ous limitation of traditional reactive potentials is the lack of explicit electrostatic effects such as those present
in some ionic or heterogeneous systems. Fixed charge Coulomb interactions have been added to several
different types of empirical potentials, such as the Buckingham potentials for metal oxides, in addition to ex-
tended SW and Tersoff potentials for silica. Although fixed charge schemes work well for bulk-like systems,
they are generally less robust in environments that are far from bulk-like or that require charge redistribution
in response to changing system conditions; these can include surfaces and other complex microstructural
elements. The self-consistent charge equilibration approach, also called the variable or dynamic charge
scheme, has addressed this limitation.

7.1 Variable Charge Equilibration

Self-consistent charge equilibration is a scheme by which each atom can dynamically and autonomously de-
termine its charge according to its local environment based on the principle of electronegativity equalization
(EE). This is driven by the thermodynamic requirement that the electronegativity, which is equal to the nega-
tive value of the electrochemical potential, should be equal at all atomic sites in a closed system at chemical
equilibrium [26], [27].

𝜒𝑖 = −𝜇𝑖 = −𝜕𝐸(𝜌)

𝜕𝜌
= 𝑒

𝜕𝐸(𝑞𝑖)

𝜕𝑞𝑖
(34)

where 𝜒 is the electronegativity, 𝜇 the chemical potential, 𝜌 the electron density, and 𝑞 the charges. At
equilibrium, electron density will transfer between atoms so that chemical potential (electronegativity) at all
atomic sites is equalized.

In atomistic simulations, the EE principle has encompassed a wide range of successive approximations
from density functional theory (DFT). The pioneering work to derive the geometry and connectivity depen-
dent charges under the framework of the EE principle includes the electronegativity equalization method
(EEM) [28], [29] proposed by Mortier et al. and the electronegativity equilibration (QEq) method proposed by
Rappe and Goddard [30].

7.2 Streitz-Mintmire Potential

The Streitz-Mintmire potential is one of the earliest developments that combines variable charge equilibration
(QEq) scheme with other types of potentials. [31] Streitz and Mintmire added QEq to EAM potentials for Al
and Al2O3, therefore allowing the Al charges to change according to their atomic environment: neutral in
bulk-like Al, fully ionized in Al2O3, and for those in between Al and Al2O3 intermediate charges were found.

7.3 Charge-Optimized Many Body (COMB) Potential

The COMB potential builds on the Tersoff potential and the Streitz-Mintmire potential, by combining the
Tersoff potential with variable charge equilibration. [21], [22] Some modifications were introduced, including
the addition of dispersion interactions (vdW) and several correction terms.

7.4 Reactive Force Field (ReaxFF)

The ReaxFF potential [23] took a different approach than the COMB potential. Starting from the valence
forcefield, ReaxFF added bond order terms to stretching, bending, and torsion interactions. Though it does

[26] R.G. Parr, et al. Journal of Chemical Physics 68 (8) (1978) 3801–3807.
[27] R.T. Sanderson, Journal of the American Chemical Society 105 (8) (1983) 2259–2261.
[28] W.J. Mortier, S.K. Ghosh, S. Shankar, Journal of the American Chemical Society 108 (1986) 4315–4320.
[29] G.O.A. Janssens, et al. Journal of Physical Chemistry 99 (10) (1995) 3251–3258.
[30] A.K. Rappe, W.A. Goddard III, Journal of Physical Chemistry 95 (8) (1991) 3358.
[31] F.H. Streitz, J.W. Mintmire, Physical Review B 50 (16) (1994) 11996–12003.
[21] T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 81, 125328 (2010)
[22] T. Liang, T.-R. Shan, Y.-T. Cheng, B. D. Devine, M. Noordhoek, Y. Li, Z. Lu, S. R. Phillpot, and S. B. Sinnott, Mat. Sci. & Eng: R 74,

255-279 (2013).
[23] Chenoweth, van Duin and Goddard, Journal of Physical Chemistry A, 112, 1040-1053 (2008).
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not have pre-defined bonds, bonds, angles, and dihedrals are identified and calculated on the fly. Disper-
sion (vdW) and Coulomb interactions were also added and are computed for all atom pairs (no exclusions).
ReaxFF includes an EEM scheme for variable charge equilibration.

8 Machine Learning Potentials

Machine learning-based methods for energy and force calculation have been used for several years. For
example, Blank et al. in 1995 [32] employed a neural net-based methodology to probe the energetics of
CO on the Ni(111) surface. Such methods, employing novel descriptors, and machine learning methods,
can yield exceptionally accurate reproduction of quantum mechanical training data at substantially reduced
computational cost. [33]

MedeA supports two machine learning potentials: SNAP and NNP.

8.1 Spectral Neighbor Analysis Potential (SNAP)

Like the GAP framework of Bartok et al. [34], SNAP uses bispectrum components to characterize the local
neighborhood of each atom in a general manner. [24] The total energy is decomposed into a sum over
atom energies. The energy of atom 𝑖 is expressed as a weighted sum over bispectrum components, which
characterize the radial and angular distribution of neighbor atoms.

With the GAP potentials, Bartok et al. [34] proposed mapping this 3D ball onto the 3-sphere, the surface of
the unit ball in a four-dimensional space. In this way, all possible neighbor positions are mapped onto a subset
of the 3-sphere. The SNAP potential, assumes a linear relationship between atom energy and bispectrum
components. The linear SNAP coefficients are determined using weighted least-squares linear regression
against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to
large QM data sets using many bispectrum coefficients

8.2 Neural Network Potential (NNP)

NNP potentials are be constructed from atom centered symmetry functions (ACSF) by using a neural network
approach. Neural networks were proposed in the 1940s to model the function of the human brain and have
been developed substantially since their introduction. Neural network potentials are based on feed-forward
neural networks which take a set of descriptors 𝐺𝑖 as input and predict the potential energy as their output.

For more details on machine learning potentials, refer to the MedeA MLPG: Generating Machine Learning
Potentials from First Principles Data section [25].

[32] Blank, T. B., Brown, S. D., Calhoun, A. W., Doren, D. J. Neural network models of potential energy surfaces, J. Chem. Phys.,
103(10), 4129 (1995)

[33] Behler, J. and Parrinello, M. Generalized neural-network representation of high-dimensional potential energy surfaces, Phys. Rev.
Lett. 98:146401 (2007)

[34] Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010).
[24] Thompson, Swiler, Trott, Foiles, Tucker, J Comp Phys, 285, 316 (2015).
[25] Behler, J.; Parrinello, M. “Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces.” Phys. Rev.

Lett. 2007, 98 (14), 146401
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