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1 DFT Origins and Overview

In the mid-1960’s, Hohenberg and Kohn [1] proved a rather remarkable theorem, which states that from
knowledge of the electron density of a physical system such as a solid, a surface, or a molecule everywhere
in space the total internal electronic energy (henceforth, the “energy”) of that system is uniquely determined.
One can therefore express the energy of an atomistic system as an exclusive functional of its electron density.
Furthermore, in most situations of practical interest, to an excellent approximation the total electronic energy
of the system does not depend on the motions of the atomic nuclei. This is the Born-Oppenheimer Approxi-
mation, which is widely valid, owing to the disparate masses of electrons and nuclei. Thus the atomic nuclei
usually can be treated as fixed point charges when calculating the electronic energy of the system. Therefore,
the variable part of 𝐸[𝜌] can be expressed as a functional exclusively of the electron density everywhere in
space,

𝐸 = 𝐸[𝜌]. (1)

The manner in which 𝐸[𝜌] is determined for particular physical systems defines the subject of density func-
tional theory (DFT). The idea of using the electron density as the fundamental entity in a quantum mechanical
theory of matter originated in the early days of quantum mechanics in the 1920’s, especially with the work of
Thomas [2] and of Fermi [3]. However, in subsequent decades, it was the Hartree-Fock (HF) approach [4],
rather than DFT, which was first developed and applied to small molecular systems. Calculations on real-
istic solid state systems were then out of reach. In 1951, Slater [5] used ideas from the electron gas with
the intention to simplify Hartree-Fock theory to a point where electronic structure calculations on solids be-
came feasible. Slater’s work, which led to the so-called 𝑋𝛼-method [6], has contributed tremendously to the
development of electronic structure calculations.

[1] Pierre Hohenberg and Walter Kohn, “Inhomogeneous Electron Gas,” Physical Review B 136, no. 3 (1964): 864-871.
[2] L H Thomas, “The Calculation of Atomic Fields,” Proc. Cambridge Philos. Soc. 23 (1927): 542-548.
[3] E Fermi, “Eine Statistische Methode Zur Bestimmung Einiger Eigenschaften Des Atoms Und Ihre Anwendung Auf Die Theorie Des

Periodischen Systems,” Zeitschrift Fur Physik 48 (1928): 73-79.
[4] D R Hartree, “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods,” Proc. Cambridge

Philos. Soc. 24 (1928): 89-110; D R Hartree, “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some
Results and Discussion,” Proc. Cambridge Philos. Soc. 24 (1928): 111-132; Vladimir Fock, “Näherungsmethode Zur Lösung Des
Quantenmechanischen Mehrkörperproblems,” Zeitschrift Fur Physik 61, no. 1 (January 1930): 126-148; Vladimir Fock, “‘Selfconsis-
tent Field’ Mit Austausch Fur Natrium,” Zeitschrift Fur Physik 62, no. 11 (November 1930): 795-805.

[5] J C Slater, “A Simplification of the Hartree-Fock Method,” Physical Review 81, no. 3 (February 1951): 385-390.
[6] J C Slater, Quantum Theory of Molecules and Solids, McGraw-Hill, 1963.
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Hartree-Fock theory and DFT are both mean-field, ground state theories, in which each electron in the sys-
tem is assumed to move in a time-averaged, smeared out field produced by all the other electrons in the
system. Both methods then employ variational principles to obtain a set of coupled equations collectively
describing the ground state of the many-electron system, which are, respectively, called the Hartree-Fock
equations or the Kohn-Sham equations [7]. In their respective methods, these equation sets function as the
effective single-particle Schrödinger equations of the electronic system. Either set of equations defines a
pseuodeigenvalue problem in which the eigenvalues depend on the eigenfunctions. Thus, these equations
must be solved iteratively until self-consistency is achieved between the input and output eigenfunctions and
the total energy.

In HF Theory, the occupied single-particle energy eigenvalues may be interpreted directly as a physical
observables, based on Koopman’s Theorem [8]. Modern-day extensions of HF theory include Moeller-
Plesset [9] and Coupled Cluster [10] methods, but these are primarily applied to molecular systems. DFT
and its refinements (hybrid functionals, GW methods, etc.) are the modern computational tools of choice
for the electronic structure of solids. In DFT, a theorem by Janak [11], discussed later, provides a physical
interpretation of DFT eigenvalues analogous to that of Koopman’s Theorem for HF eigenvalues. It is noted,
however, that in neither case is the total system energy merely a sum of the eigenvalues of the occcupied
singe-electron states multiplied by their occupanices.

HF Theory and DFT differ most fundamentally in the manner, in which the antisymmetry requirement on
many-body wavefunctions of groups of indistinguishable fermions, such as electrons, is enforced. This re-
quirement states that when the labels of any two indistinguishable fermions in the list of particles described
by the wavefunction are interchanged, or “exchanged,” the value of the wavefunction must change sign. The
most important consequence of antisymmetry is exclusion, which prohibits any two particles described by the
same indistinguishable fermion wavefunction from having the same exact list of quantum numbers. This prin-
ciple forces the electrons of a many-electron system to populate a set of states of increasingly higher energy,
in accordance with the so called Aufbau principle. This effect dictates the basic structure of many-electron
ground states. Separately, antisymmetry mediates the Coulomb interaction between electrons by keeping
pairs of electrons in similar states and with parallel spins, farther apart. This effect is known as the exchange
interaction.

HF Theory enforces antisymmetry by expressing a manybody wave function as the determinant of a matrix
whose ij’th element is the [i]’th single-particle wavefunction of the [j]’th particle in the system. Here [i] rep-
resents the i’th complete set of single-particle quantum numbers defining the occupied single-particle state
“i,” and [j] represents the three spatial coordinates and the spin of the j’th particle. (Interchanging any two
particle labels in a determinantal wavefunction is the equivalent of interchanging two rows or columns of the
matrix whose determinant is formed. Thus, determinantal wavefunctions are manifestly antisymmetric.) In
DFT, the electron density is formed as a simple sum over the square moduli of the occupied states, so the
effects of antisymmetry do not appear naturally in the energy operator, that is, the Hamiltonian. Therefore,
terms accounting for antisymmetry effects, principally the exchange term, must be manually inserted. In ei-
ther theory, state occupancies are manually constrained in accordance with exclusion, and orthonormality of
the eigenfunctions is enforced by means of a set of Lagrange multipliers. However, the two differing means
of imposing or incorporating antisymmetry have far-reaching consequences.

Because of exclusion, a many-electron wavefunction will tend toward zero amplitude whenever any two elec-
trons with parallel spins are close together. But even electrons with opposing spins repel one another through
the Coulomb interaction, which becomes increasingly strong as two electrons approach one another. Thus,
regardless of their spins, the instantaneous position of any individual electron in a many-electron system is
correlated with the instantaneous positions of all other electrons in the system. Mean-field theories like HF
and DFT can only capture these “correlation effects” in an approximate manner.

For historical reasons, the “correlation energy” is defined as the difference between the exact non-relativistic
electronic energy and the Hartree-Fock energy of the system. In Hf-based approaches, the correlation energy
may be estimated by combining multiple determinantal wave functions, or elements thereof in the same

[7] Walter Kohn and L J Sham, “Self Consistent Equations Including Exchange and Correlation Effects,” Physical Review A 140, no. 4
(1965): 1133-1138.

[8] T. Koopmans, “Uber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms.”, Physica
(Amsterdam) 1, (1934): 104

[9] C. Moeller and M. S. Plesset, “Note on an Approximation Treatment for Many-Electron Systems”, Physical Review 46, (1934): 618
[10] J. Cizek, “On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type

Expansion Using Quantum-Field Theoretical Methods.”, The Journal of Chemical Physics 45, (1966): 4256
[11] J Janak, “Proof That 𝛿 E/𝛿 Ni=E in Density-Functional Theory,” Physical Review B 18, no. 12 (December 15, 1978): 7165.
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wavefunction. In DFT-based approaches, the correlation energy is expressed as a spatial integral over a
function of the local electron density, often with gradient corrections. This local density function, called the
correlation potential, can be estimated for an “inhomogeneous” electron gas, such as that existing within any
real material, based on first principles theoretical results for the “homogeneous,” or uniform electron gas.
In the Local Density Approximation (LDA) [7], the correlation potential of a homogeneous electron gas at a
particular point is set equal to the correlation potential of a homogeneous electron gas of the same density as
exists at that point in the inhomogeous system. In the Generalized Gradient Approximation (GGA), a density
gradient correction term is included to account for inhomogeneity, and in addition a number of so-called sum
rules are enforced to be obeyed. Generally, the biggest improvements offered by the GGA relative to the LDA
are realized for purposes of geometry optimization.

The correlation energy for an inhomogeneous electron gas converges to the uniform electron gas result of the
same local density at both extremes of density: infinite electron density, at which the Thomas-Fermi screening
length goes to zero; and vanishingly small density, at which correlation effects go to zero. In real materials with
electron densities between the extremes, expressions for the correlation potential are necessarily imprecise.
However, they must satisfy various additional conditions.

Antisymmetry also leads to an “exchange” term in the total energy expression, resulting from integrals of
products of single-particle wavefunctions with interchanged, or “exchanged,” state and particle labels, multi-
plied by the Coulomb operator. In HF Theory, this term can produce lists of computationally arduous integrals
over products of functions localized at up to four different nuclear centers. The root of the difficulty is that the
exchange potential is intrinsically “nonlocal,” in that it depends on the values of wavefunctions at all points
within the computational domain. In DFT, this term is replaced by a much more computationally tractable
integral involving only point functions of the local charge density and the Coulomb operator.

The exchange and correlation potentials, both originating from antisymmetry, usually are combined in DFT
functionals into a joint exchange-correlation (XC) potential. In essence, tradional DFT accepts a less precise
local description of the Coulomb exchange term, which is intrinsically nonlocal, in return for more serviceable
approximations of electron correlation, combined with greater computational facility. This greater computa-
tional efficiency enables one to analyze more complex, and often more realistic material models with larger
numbers of atoms. DFT also has less difficulty with open-shell electronic configurations, as are encountered,
for example, in transition metals, which cannot be described by a single-determinant wavefunction.

Traditional DFT, that is, the LDA and GGA, are recommended for properties of the electronic ground state of
systems, such as total energies, forces, and phonon spectra. In several modern extensions of traditional DFT,
a degree of non-local exchange, combined with a screening factor, or even exact HF exchange, is mixed into
the XC potential. These hybrid functionals can significantly improve the description of excited states, bandgap
energies, and optical and Fermi surface properties, but at a greater computational cost. MedeA VASP offers
these advanced functionalities in addition to LDA and GGA options.

2 The Kohn-Sham Equations

In solid-state systems, molecules, and atoms, the electron density is a scalar function defined at each point r
in real space,

𝜌 = 𝜌(𝑟) (2)

The electron density and the total energy depend on the type and arrangements of the atomic nuclei. There-
fore, one can write

𝐸 = 𝐸 [𝜌(𝑟), {𝑅𝛼}] (3)

The set (𝑅𝛼) denotes the positions of all atoms 𝛼 in the system under consideration. Eq. (3) is the key to the
atomic-scale understanding of electronic, structural, and dynamic properties of matter. If one has a way of
evaluating this expression one can, for example, predict the equilibrium structure of a solid, the reconstruction
of free surfaces, and the equilibrium geometries of molecules adsorbed on surfaces.

Furthermore, the derivative of the total energy Eq. (3) with respect to a displacement of an atomic nucleus
from equilibrium yields the force acting on that atom corresponding to that displacement. This fact enables
efficient searches for stable structures and, perhaps more importantly, the study of dynamical processes
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such as diffusion and the reactions between atoms and molecules on surfaces. As alcreated mentioned, the
computational methods described here exploit the Born-Oppenheimer approximation, in which it is assumed
that the motions of the electrons are infinitely faster than those of the nuclei. This fact justifies calculating the
electronic structure for a fixed atomic arrangement, and then moving the atoms according to classical me-
chanics. Born-Oppenheimer is an especially good approximation for ground state properties of heavy atoms
like tungsten, but may introduce some errors for light atoms such as hydrogen or lithium. This approximation
also breaks down in certain special cases, such as in superconductors below their critical temperatures.

In DFT, the total energy is decomposed into three parts: a part describing the electronic kinetic energy, an
electrostatic or Coulomb energy part, and the so-called exchange-correlation energy already introduced,

𝐸 = 𝑇0 + 𝑈 + 𝐸𝑥𝑐 (4)

The most straightforward term in the total energy is the Coulomb energy 𝑈 . It is purely classical, and consists
of the electrostatic energy arising from the Coulomb attraction between electrons and nuclei, the repulsion
between all electronic charges, and the repulsion between nuclei,

𝑈 = 𝑈𝑒𝑛 + 𝑈𝑒𝑒 + 𝑈𝑛𝑛 (5)

With

𝑈𝑒𝑛 = −𝑒2
∑︁

𝑍𝛼

∫︁
𝜌(𝑟)

|𝑟 −𝑅𝛼|
𝑑𝑟 (6)

𝑈𝑒𝑒 = 𝑒2
∫︁ ∫︁

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ (7)

𝑈𝑛𝑛 = 𝑒2
∑︁ 𝑍𝛼𝑍𝛼′

|𝑅𝛼 −𝑅𝛼′ | (8)

where 𝑒 is the elementary charge of a proton and 𝑍𝛼 is the atomic number of an atom 𝛼. The summations
extend over all atoms, and the spatial integrations are over the entire computational domain. Once the
electron density at all points, and the atomic numbers and positions of all atomic nuclei are known, the above
expression can be evaluated using the techniques of classical electrostatics.

The kinetic energy term, 𝑇0, is more subtle and is discussed in detail here. In DFT, the “real” electrons of a
system are replaced by “effective” electrons, often called “electron quasiparticles”, with the same charge as
real electrons. The physical justification for the independent particle picture, which actually refers to electron
quasiparticles, is that the wavefunction defining the state of a many-particle quantum system can be repre-
sented as a linear combination of products of single-particle wavefunctions. (Note: unless a spin-polarized
version of DFT is considered, these so called single-particle states can actually hold a pair of electrons with
identical charge densities, but opposite spin.) In principle, all the physically observable characteristics of the
many-body system can be reproduced in this way. In its ground state, individual particles may exist only in
one of a finite set of allowed single-particle states. Particles in different single-particle states can only interact
(i.e., scatter) with one another if energy is added to the system to lift one or more particles into previously
unoccupied states of higher energy. It follows that in the ground state, the electron quasiparticles occupying
the single-particle states of the system, which are unable to scatter with one another, act in much the same
way as if they were truly independent particles.

Now as previously discussed, the instantaneous motion of a “real” electron is correlated with the instanta-
neous motions of all other electrons in the system. Hence, because effective electrons, by definition, see
only a constant, time-averaged effective potential created by all other electrons in the system, terms must be
added to the effective single-particle energy operator, or Hamiltonian, to capture dynamic correlation effects.
The total density of all effective electrons is the same as the real total electron density. However, the effective
masses of effective electrons, or electron quasiparticles, are such that a version of Newton’s Second Law re-
mains applicable, but in a generalized form:, where the scalar electron mass is replaced by the effective mass
tensor 𝑀 , reflecting the fact that electrons in a crystal subject to an external applied force are simultaneously
subject to the crystal field of the material.

𝑇0 is the sum of the kinetic energies of all effective electrons moving as independent particles. (Usually, it is
not necessary to explicitly maintain this distinction between real and effective electrons.) If the state of each
effective electron is described by a single-electron wave function, Ψ𝑖, then the kinetic energy of all effective
electrons in the system is given by,
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𝑇0 =
∑︁
𝑖

𝑛𝑖

∫︁
Ψ*

𝑖 (𝑟)

[︂
−~2

2𝑚
∇2

]︂
Ψ𝑖(𝑟)𝑑𝑟 (9)

This expression is the sum of the expectation values of single-electron kinetic energies. 𝑛𝑖 denotes the
number of electrons in the state 𝑖. By construction, the effects of the crystal field, and dynamical correlations
between the electrons are excluded from 𝑇0, so that the free electron masses, rather than the effective
masses, are relevant here. (More on this point, below.)

The third term in Eq. (4), the exchange-correlation energy, 𝐸𝑥𝑐, includes all remaining complicated electronic
contributions to the total energy. The most important of these contributions is the exchange term, which
is a direct consequence of the exclusion principle. As previously mentioned, when the energy of a many-
electron system is evaluated, the antisymmetry requirement gives rise to terms involving products of pairs of
single-electron wave functions in which the state and particle coordinate labels are “exchanged” relative to
one another. This term in the energy enters with the opposite sign from that of the direct Coulomb term, and
therefore reduces the net average Coulomb repulsion between electrons of parallel spin.

The exchange term in the energy is purely quantum in nature with no classical analog, and as mentioned, it is
only nonzero for pairs of electrons with parallel spin. Forcing two electrons with parallel spin to be in the same
place requires the antisymmetric many-electron wave function to equal its own negative, meaning that the
wavefunction must have vanishing amplitude whenever two electrons with parallel spin approach one another.
(This would be true, even if electrons were uncharged and experienced no Coulomb repulsion!) This fact
means that each electron carries with it an “exchange hole,” which can be thought of as a small surrounding
volume of space in which the probability of finding another electron with parallel spin is dynamically reduced
relative to the probability expected from mean field theories. Slater showed that the total charge integrated
over the entire exchange hole is +𝑒162.

In consequence of exchange effects, the antisymmetric nature of many-electron wavefunctions naturally in-
corporates a measure of dynamic correlation into mean field approximations to the system energy, but only
for pairs of electrons with parallel spin. This is the case with DFT. However, the effects of dynamic correla-
tion between pairs of electrons with antiparallel spins are as yet completely unaccounted for in the current
treatment. The remaining effects of dynamic correlations between all electrons, regardless of spin, must be
captured by introducing additional terms to the expression for 𝐸[𝜌].

As an illustration of the relative importance of the various contributions to the total electronic energy, the total
energy of a single carbon atom is approximately -1,019 eV, that of a silicon atom is -7,859 eV, and that of a
tungsten atom is -439,634 eV. In all three cases, the kinetic energy and the Coulomb energy contributions
are of similar magnitude but of opposite sign (a result guaranteed by the Virial Theorem). The magnitude
of the exchange-correlation term is about 10% of that of the Coulomb term, and is attractive for electrons
(because the exchange-hole is positive). The correlation energy is smaller in magnitude than the exchange
energy, but it nevertheless plays an important role in determining the details of the length and strength of
interatomic bonds, as well as of band gap energies, energy densities of states and Fermi Surface properties
in crystalline solids.

Compared with the total energy per atom in a solid material, the binding energy of an atom in a solid or on
a surface is quite small, in the range from about 1 to 8 eV. Energy differences influencing changes in the
equilibrium positions of atoms, as for example on a reconstructed surface, can be even smaller. For example,
only about 0.03 eV are required to flip an asymmetric Si-dimer on a reconstructed Si(001) surface from one
configuration into another, reversing the role of the upper and lower Si atoms. It is a tremendous challenge
for any theory to cope with a range of energies of nearly five order of magnitude, from tenths to thousands of
eV. Density functional theory meets this challenge remarkably well in a surprisingly wide range of cases.

The Hohenberg-Kohn Theorem, which is central to DFT, states that the ground state total energy of an
electronic system, which is uniquely determined by the corresponding ground state charge density, is at its
minimum value and stationary with respect to first-order variations in that charge density. That is,

𝜕𝐸[𝜌]

𝜕𝜌
|𝜌=𝜌0

= 0 (10)

In conjunction with the kinetic energy, we have introduced single-electron wave functions Ψ𝑖, from which the
total electron density can be generated.

𝜌(𝑟) =
∑︁

𝑛𝑖|Ψ𝑖(𝑟)|2 (11)
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As in the expression for the kinetic energy, 𝑛𝑖 denotes the occupation number of the eigenstate 𝑖, which is
represented by the single-electron wave function Ψ𝑖. To this point in its development, DFT is formally exact
in the sense that no approximations yet have been made in describing the many-electron interactions. By
construction, 𝜌 in Eq. (11) is the exact many-electron density.

Equations that can be used for practical density functional calculations next must be derived, which nec-
essarily involve approximations. Through equations (9) and (11) we have introduced single-electron wave
functions. A change in these wave functions corresponds to a variation in the electron density. Therefore, the
variational condition (10) can be used to derive the conditions for the one-particle wave functions that lead to
the ground state electron density. To this end, one substitutes Eq. (11) into expression (10) and varies the
total energy with respect to each wave function. This procedure leads to the following equations:[︂

−~2

2𝑚
∇2 + 𝑉𝑒𝑓𝑓 (𝑟)

]︂
Ψ𝑖(𝑟) = 𝜖𝑖Ψ𝑖(𝑟) (12)

with

𝑉𝑒𝑓𝑓 (𝑟) = 𝑉𝑐(𝑟) + 𝜇𝑥𝑐 [𝜌(𝑟)] (13)

Equations (12) are called the Kohn-Sham equations. The electron density, which is constructed from the
single-electron wave functions that are the solutions of Equations (12), is the ground state density that cor-
responds to the minimum total energy. The solutions of the Kohn-Sham equations form an orthonormal set,
i.e. ∫︁

Ψ*
𝑖 (𝑟)Ψ𝑖(𝑟)𝑑𝑟 = 𝛿𝑖𝑗 (14)

This additional constraint was implemented in Equations (12) by introducing “Lagrange multipliers,” 𝜖𝑖, into
Equation (10). These “Lagrange multipliers” are effective single-electron energy eigenvalues and their inter-
pretation will be discussed more later. These eigenvalues are used to determine the occupation numbers
𝑛𝑖 of the single-electron states by applying the Aufbau principle. According to this principle, eigenstates are
filled to their maximum occupancy allowed by i Exclusion in order of increasing eigenvalues, starting with the
state with the lowest (i.e., most negative) eigenvalue. For non-spin polarized systems, each state may be
occupied by up to two electrons until all electrons are accommodated. In spin polarized systems, each state
is occupied by at most one electron. In either case, the highest occupied state or states is/are permitted to
have partial occupancy.

As a consequence of the partitioning of the total energy in Eq. (4), the Hamiltonian operator in the Kohn-
Sham equations (12) contains three terms, one for the kinetic energy, the second for the Coulomb potential,
and the third for the exchange-correlation potential. The kinetic energy term is the standard second-order
differential operator familiar from single-particle Schrödinger equations and its construction does not require
knowledge of the specific system being modeled. In contrast, the Coulomb potential operator, 𝑉𝑐, and the
exchange-correlation potential operator, 𝜇𝑥𝑐, both depend on the electron distribution in the specific system
under consideration.

The Coulomb, or electrostatic potential 𝑉𝑐 at point 𝑟 is generated from the electric charges of all nuclei and
electrons in the system. It can be evaluated directly in real space via,

𝑉𝑐(𝑟) = −𝑒2
∑︁
𝛼

𝑍𝛼

|𝑟 −𝑅𝛼|
+ 𝑒2

∫︁
𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′ (15)

In condensed matter systems it is more convenient to use Poisson’s equation, given below, to evaluate the
Coulomb potential:

∇2𝑉𝑐(𝑟) = −4𝜋𝑒2𝑞(𝑟) (16)

Here, 𝑞 denotes both the electronic charge distribution 𝜌 and the positive point charges of the nuclei at
positions 𝑅𝛼.

The exchange-correlation potential is related to the exchange-correlation energy by

𝜇𝑥𝑐 =
𝜕𝐸𝑥𝑐[𝜌]

𝜕𝜌
(17)
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Equation (17) is formally exact in the sense that it does not contain any approximations to the complete many-
body interactions. In practice, however, the exchange-correlation energy (and thus the exchange-correlation
potential) is not known for a spatially varying electron gas. Therefore, one needs to develop approximate
expressions for the XC potential in terms of the electron density (since, as a consequence of the Kohn-Sham
theorem, the exchange-correlation energy depends only on the electron density). A simple and, as it turns
out, surprisingly good approximation is to assume that the exchange-correlation energy depends only on the
local electron density around each volume element 𝑑𝑟. This is called the local density approximation (LDA)

𝐸𝑥𝑐[𝜌] =

∫︁
𝜌(𝑟)𝜖0𝑥𝑐 (𝜌(𝑟)) 𝑑𝑟 (18)

Below is an illustration of the basic idea. In any atomic arrangement such as a crystal, a surface, or a
molecule, there is a certain electron density 𝜌 at each point 𝑟 in space. The LDA then rests on two basic
assumptions:

1. the exchange and correlation effects come predominantly from the immediate vicinity of a point 𝑟 and

2. these exchange and correlation effects do not depend strongly on variations of the electron density in
the vicinity of 𝑟.

If conditions (i) and (ii) are reasonably well fulfilled, then the contribution from volume element 𝑑𝑟 would be
the same as if this volume element were surrounded by a constant electron density of the same value as
within 𝑑𝑟. This is an excellent approximation for many metallic systems, but results in more significant errors
in systems with strongly varying electron densities.

Illustration of the local density approximation: For the purpose of computing the exchange-correlation energy
in a volume element 𝑑𝑟𝑖, the electron density 𝜌𝑖 around point 𝑟𝑖 is assumed to be constant in the near
surrounding volume. Note that the value of 𝜌𝑖 is different in each volume element.

A system of interacting electrons with a constant density is called a homogeneous electron gas. Extensive
theoretical efforts have been made to understand and characterize such an idealized system. In particular,
the exchange-correlation energy per electron of a homogeneous electron gas, 𝜖0𝑥𝑐(𝜌) has been determined
by several approaches such as many-body perturbation theory by Hedin and Lundqvist [12], and with quan-
tum Monte-Carlo methods by Ceperley and Alder [13]. As a result, 𝜖𝑥𝑐(𝜌), is quite accurately known for a
range of densities. For practical calculations, 𝜖𝑥𝑐(𝜌) is expressed as an analytical function of the electron
density. There are various analytical forms with different coefficients in their representation of the exchange-
correlation terms. These coefficients are not adjustable parameters, but rather they are determined from
first principles. Hence, the LDA is a first-principles approach, which is distinct in meaning from an “exact”
approach, in the sense that the quantum mechanical problem is solved without any adjustable, arbitrary, or
system-dependent parameters.

Below, an example for analytical expressions used in LDA computer programs is shown. Explicit forms for
the local density exchange were given originally by Gàspàr [14] and Kohn & Sham [7]. Correlation terms are
according to Hedin & Lundqvist [12]. Exchange and correlation energies per electron are denoted by 𝜖 and

[12] L Hedin and B I Lundqvist, “Explicit Local Exchange-Correlation Potentials,” Journal of Physics C: Solid State Physics 4, (1971):
2064-2083. U von Barth and L Hedin, “A Local Exchange-Correlation Potential for the Spin Polarized Case. I,” Journal of Physics
C: Solid State Physics, 1972.

[13] D M Ceperley, “Ground State of the Electron Gas by a Stochastic Method,” Physical Review Letters 45, no. 7 (August 1980):
566-569.

[14] Reszö Gáspár, “Über Eine Approximation Des Hartree-Fockschen Potentials Durch Eine Universelle Potentialfunktion,” Acta Phys-
ica Academiae Scientiarum Hungaricae 3, no. 3 (April 1954): 263-286.
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the corresponding potentials by 𝜇. Both quantities are given in Hartree atomic units (1 Hartree = 2 Rydberg
= 27.21165 eV ). The units for the electron density are number of electrons/(Bohrradius)3.

Note that there are two types of exchange-correlation terms, one type for the energy and the other for the
potential. The energy, 𝜖𝑥𝑐(𝜌), is needed to evaluate the total energy and the potential term, 𝜇𝑥𝑐(𝜌), is required
for the Kohn-Sham equations. The two terms are, following (17) and (18), related.

𝜇𝑥𝑐 =
𝜕 (𝜌𝜖𝑥𝑐(𝜌))

𝜕𝜌
(19)

Using the explicit formulas given above, one can evaluate the exchange-correlation potential within the local
density approximation for any electron density distribution 𝜌. Thus, all terms of the effective single-particle
operator in the Kohn-Sham equations are now defined, and one can proceed with a computational imple-
mentation.

3 Interpretation of One-Particle Energies

The fundamental quantities in density functional theory are the electron density and the corresponding total
energy, but not the one-particle eigenvalues. However, the one-electron picture is so useful that one seeks to
exploit the Kohn-Sham eigenvalues and one-particle wave functions as much as possible. The one-particle
energies of effective electrons have been introduced in the derivation of the Kohn-Sham equations as La-
grange multipliers. The Kohn-Sham equations have the form of an eigenvalue problem in which each wave
function has an associated eigenvalue 𝜖𝑖 with an occupation number of 𝑛𝑖. Janak’s theorem [11] provides a
relationship between the total energy and these eigenvalues.

𝜖𝑖 =
𝜕𝐸

𝜕𝑛𝑖
(20)

The eigenvalue 𝜖𝑖 equals the change of the total energy with respect to the change in the occupation number
of level 𝑖. However, it is desirable to seek a more direct physical interpretation of these eigenvalues. The
independent particle picture, in which many-electron states are viewed as phase-coherent superpositions of
one-electron states, was firmly established in solid-state and molecular physics long before the advent of
DFT. For example, the distinction between a metal and an insulator is explained by differences in their energy
band structures. (Energy bands are one-electron energies of allowed states of a periodic potential plotted in
reciprocal space as a function of different directions.) These same band structures inform the electronic and
optical characteristics of semiconductors and semiconductor/metal junctions. Photoemission experiments
also are conveniently interpreted in a one-electron picture, often offering quite reasonable quantitative agree-
ment between theory and experiment. Likewise, the analysis of the s, p, and d character of partial electron
energy densities of states (i.e., the number of allowed states per unit energy) has become an extremely use-
ful tool in the understanding of chemical bonding in alloys and compounds. Electronic band structures and
partial densities of states are easily obtained from MedeA VASP.

The LDA and GGA levels of theory often can provide qualitatively reasonable optical spectra. For this pur-
pose, it often suffices to evaluate only the “direct” optical transitions, which are those for which the wave
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vectors (or crystal momenta) of the initial and final electronic states remain the same. For each of these
transitions, absorption can occur for photons whose frequency corresponds to the energy difference between
the initially occupied and unoccupied states. Integration over all nonequivalent wave vectors in the reciprocal
space of the periodic potential gives the joint energy density of states. The intensity of each transition is
then computed from the wave functions for each pair of occupied and unoccupied states for all nonequivalent
wave vectors.

The computed electric dipole matrix elements combine with the joint density of states, yielding the imaginary
part of the dielectric function 𝜖2. From 𝜖2 one obtains the real part of the dielectric function 𝜖1 from the
Kramers-Kronig Relation. Knowledge of 𝜖1 and 𝜖2, i.e. the complex dielectric function, is sufficient to derive
the absorption coefficient, reflectivity, and the refractive index. In MedeA VASP, the relevant matrix elements
are directly computed by VASP. The Kramers-Kronig transformation is performed by VASP, which provides the
complex dielectric function as a function of energy. From this primary information the other optical functions
are computed and displayed in MedeA. The dielectric function as computed by VASP is accessible in the
OUTCAR file. If desired, the individual dipole transition matrix elements can be accessed there as well.

The direct interpretation of the Kohn-Sham eigenvalues to derive excitation energies often gives quantitative
agreement with experimental photoemission spectra and reasonable qualitative agreement with optical spec-
tra (if excitonic effects are minor). However, significant discrepancies with experiment often arise regarding
quantities such as energy band gaps and Fermi surface properties of semiconductors and insulators. Dis-
crepancies greater than a factor of two can be found between measured band gap values and the LDA or
GGA eigenvalues corresponding to the highest occupied and lowest unoccupied single-electron states. The
LDA/GGA even predicts some narrow band gap semiconductors such as InSb to be semimetals, with over-
lapping valence and conduction bands. This is because the LDA and GGA were developed to study system
ground states, whereas optical properties and energy band gaps necessarily involve the virtual, or excited
states of a system.

Thus, the discrepancies mentioned above are not necessarily a “failure” of the LDA and GGA, inasmuch as
they represent an inaccurate application of LDA/GGA results beyond their range of validity. However, as such,
these difficulties do reveal an important limitation of the LDA, and one which is not substantively improved by
the GGA. In the derivation of the Kohn-Sham equations, the effective single-particle eigenvalues were never
shown or postulated to be physically observable excitation energies! Only the total electron density and the
corresponding total system energies predicted by the LDA and GGA have rigorous physical interpretations.
It was to be expected, therefore, that the LDA and GGA would have difficulties predicting properties of the
system requiring accurate knowledge of excited states.

Nevertheless, DFT eigenvalues and eigenfunctions offer a very useful foundation for more rigorous theories
that can predict excited state properties of materials, especially those of semiconductors and insulators, with
far greater accuracy than the LDA/GGA itself. One of the most rigorous, and computationally demanding
approaches is that of the Green’s Function - Screened Coulomb Exchange method, commonly known as the
“GW” method, which was pioneered by Hybertsen & Louie [15]. More computationally tractable approaches
add a measure of nonlocal exchange to the LDA/GGA local exchange-correlation potential, usually with
an exponential screening factor. These so called hybrid functional and screened exchange methods often
approach the same level of quantitative accuracy as the GW method (other than for excitonic properties), at a
fraction of the computational cost. The greater computational facility of hybrid functional methods sometimes
translates into results with greater overall reliabilty, owing to the ability to perform more thorough k-space
sampling, or to analyze more realistic geometric models than would be possible in GW computations. VASP
offers a full menu of GW, screened exchange and hybrid functional options.

The highest occupied electronic level in a metallic system is called the Fermi energy or Fermi level, 𝐸𝐹 . (In
a semiconductor or an insulator, the Fermi Energy lies in an energy band gap.) The nature of the electronic
states at 𝐸𝐹 play a crucial role in determining materials properties such as electrical and thermal conductivity,
magnetism, and superconductivity. The MedeA Electronics module enables visualization of the Fermi surface
and provides access to the transport properties. On surfaces, the energy difference between 𝐸𝐹 and the
electrostatic potential in the vacuum region, 𝑉0, above the surface is the work function, 𝜑. While in general
the Kohn-Sham eigenvalues are not excitation energies, it was shown by Schulte [16] that for a metallic
system the highest occupied Kohn-Sham eigenvalue can be directly interpreted as the work function. Thus,
the agreement between experimental and calculated work functions provides a good test for the quality of

[15] Mark Hybertsen and Steven Louie, “First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and
Insulators,” Physical Review Letters 55, no. 13 (September 23, 1985): 1418.

[16] F Schulte, “On the Theory of the Work Function,” Zeitschrift Fur Physik B Condensed Matter 27, no. 4 (1977): 303-307.

v. 3.9 Copyright © 2024 Materials Design, Inc., All rights reserved.
Materials Design® and MedeA® are registered trademarks of Materials Design, Inc.

12121 Scripps Summit Dr., Ste 160 San Diego, CA 92131

9 of 16



D
O

C
U

M
E

N
TA

TI
O

N
MedeA Documentation

actual calculations. With present LDA approaches, the calculated values are typically within 0.1-0.2 eV of the
experimental results.

4 Spin-Polarization

So far, the discussion of density functional theory was restricted to non-spin-polarized cases. However, many
systems such as magnetic transition metals or molecules such as O2 involve unpaired electrons or molecular
radicals and thus require a spin-polarized method. In such systems, the number of electrons with “spin-up”
can be different from that with “spin-down”. In the early 1970’s, von Barth & Hedin [17] and Gunnarson,
Lundqvist & Lundqvist [18] generalized density functional theory to accommodate spin-polarized systems.
This resulted in a spin density functional theory known as the local spin density (LSD) approximation.

The explicit form of local spin density exchange-correlation terms given by von Barth & Hedin is,

Exchange-correlation potential

Energies and potentials are given in Hartree atomic units; the units for electron and spin densities are
number of electrons/(Bohrradius)3.

In the local spin density functional (LSDF) theory, the fundamental quantities are both the electron density,
𝜌, and the spin density, 𝜎. The spin density is defined as the difference between the density of the spin-up

[17] U von Barth and L Hedin, “A Local Exchange-Correlation Potential for the Spin Polarized Case. I,” Journal of Physics C: Solid State
Physics, 1972.

[18] O Gunnarson, BI Lundqvist, and S Lundqvist, “Screening in a Spin-Polarized Electron Liquid,” Solid State Communications 11, no.
1 (1972): 149-153.
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electrons and the density of the spin-down electrons

𝜎(𝑟) = 𝜌↑(𝑟) − 𝜌↓(𝑟) (21)

with the total electron density,

𝜌(𝑟) = 𝜌↑(𝑟) + 𝜌↓(𝑟) (22)

In LSDF theory, the exchange-correlation potential for spin-up electrons is in general different from that for
spin-down electrons. Consequently, the effective potential (13) becomes dependent on the spin. Thus, the
Kohn-Sham equations (12) in their spin-polarized form are[︂

−~2

2𝑚
∇2 + 𝑉 𝜎

𝑒𝑓𝑓 (𝜖𝜎𝑖 )

]︂
Ψ𝜎

𝑖 (𝑟) = 𝜖𝜎𝑖 Ψ𝜎
𝑖 (𝑟) (23)

𝜎 =↑ or ↓

with

𝑉 𝜎
𝑒𝑓𝑓 = 𝑉𝑐 + 𝜇𝜎

𝑥𝑐 [𝜌(𝑟), 𝜎(𝑟)] (24)

The exchange-correlation potential in LSDF theory depends on both the electron density and the spin density,
as written in equation (24). There are two sets of single-particle wave functions, one for spin-up electrons
and one for spin-down electrons, each with their corresponding one-electron eigenvalues. For the case of
equal spin-up and spin-down densities, the spin density is zero throughout space and LSDF theory becomes
identical with the LDF approach. Notice that in spin-polarized calculations, the occupation of single-particle
states is 1 or 0, but there is still only one Fermi energy. In magnetic systems, the spin-up and spin-down
electrons are often referred to as “majority” and “minority” spin systems. The table in the next section gives
an example of the local spin density exchange-correlation formula by von Barth & Hedin [17].

5 Generalized Gradient Approximation

A large number of total energy calculations have shown that the LDA gives interatomic bond lengths within
±0.05 of experiment or better for a great variety of solids, surfaces, and molecules. However, the following
systematic errors, all associated with “overbinding,” are found:

• most lattice parameters predicted with LDA are too short.

• weak bonds are noticeably too short, for example the Ni-C bond in the Ni carbonyl Ni(CO)4, the bond
between two magnesium atoms (which are closed shell systems), and the length of hydrogen bonds
such as that in the water dimer HOH-OH2;

• the binding energies calculated with the LDA are typically too large, sometimes by as much as 50% in
strongly bound systems and even more in weakly bound materials.

Gradient-corrected density functionals as suggested by Perdew [19], Becke [20], Perdew & Wang [21] and
Perdew, Burke & Ernzerhof [22] offer a remedy. The basic idea in these schemes is the inclusion of terms in
the exchange-correlation expressions that depend on the gradient of the electron density and not only on its
value at each point in space. Therefore, these corrections are also sometimes referred to as “non-local” (or
“semi-local”) potentials, as the gradient term implicitly involves the value of the density at more than one point.
However, this kind of term is distinct from globally non-local potentials such as exact exchange. The table
below gives the form suggested by Becke [20] for the exchange part and by Perdew [19] for the correlation
part.

[19] John P Perdew, “Density Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas,” Physical Review
B 33, no. 12 (1986): 8822-8824.

[20] A D Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A 38, no. 6
(1988): 3098.

[21] John P Perdew and Yue Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical
Review B 45, no. 23 (June 1992): 13244-13249.

[22] John P Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters
77, no. 18 (October 1996): 3865-3868.
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While dissociation energies calculated with these corrections rival the best post-Hartree-Fock quantum chem-
istry methods in accuracy, gradient-corrected density functional calculations are computationally much less
demanding and more widely applicable. Gradient-corrected density functionals have been studied exten-
sively for molecular systems, for example by Andzelm & Wimmer [23] The results are very encouraging and
this approach could turn out to be of great value in providing quantitative thermochemical data.

The one-particle eigenvalues obtained with gradient-corrected exchange-correlation potentials are not sig-
nificantly different from the LDA eigenvalues. Therefore, these potentials do not (and are not intended to)
remove the discrepancy between calculated and measured energy band gaps. Their primary value is in bet-
ter describing ground state properties, whereas bandgap energies involve unoccupied excitation states as
well as occupied states.

Gradient-correction to the total energy for exchange by Becke and correlation by Perdew

𝐸𝐺𝐺𝐴 = 𝐸𝐿𝑆𝐷 + 𝐸𝐺
𝑋 + 𝐸𝐺

𝐶

𝐸𝐺
𝑋 = 𝑏

∑︁∫︁
𝜌𝜎𝜒

2
𝜎

1 + 6𝑏𝜒𝜎𝑠𝑖𝑛ℎ−1𝜒𝜎
𝑑𝑟

𝜒𝜎 =
∇𝜌

𝜌
4
3

𝜎 =↑ or ↓

𝐸𝐺
𝐶 =

∫︁
𝑓 (𝜌↑, 𝜌↓)

−𝑔(𝜌)∇𝜌 |∇𝜌|2𝑑𝑟

(25)

Above, energies are given in Hartree atomic units; the units for the electron and spin densities are number
of electrons / (Bohr radius)3. The constant 𝑏 in Becke’s formula is a parameter fitted to the exchange energy
of inert gases. The explicit form of the functions 𝑓 and 𝑔 in Perdew’s expression for the correlation energy is
given in the original paper.

5.1 Relativistic Effects

Electrons near an atomic nucleus achieve such high kinetic energies that relativistic effects become notice-
able even for light atoms near the beginning of the periodic table. For elements with an atomic number above
about 54 (Xe) these relativistic effects become quite important and should be included in electronic structure
calculations. The relativistic mass enhancements of electrons in states concentrated near a nucleus lead
to a contraction of the electronic charge distribution compared with that which would be predicted from a
non-relativistic treatment. For atoms with about Z>54 non-relativistic calculations therefore can overestimate
bond lengths by 0.1 Å and more. Furthermore, relativistic effects change the relative energy of s, p, d,
and f -states, which can have a significant impact on bonding mechanisms and energies, and energy band
topology.

Relativistic effects lead to a spin-orbit splitting between states of differing orbital and total (i.e., orbital plus
spin) angular momentum that would otherwise be degenerate (have the same energy). So, for example, a
non-relativistic set of single-electron states (𝑛, 𝑙) with principle quantum number 𝑛 and orbital angular mo-
mentum 𝑙 would comprise a 2(2𝑙+1)-fold degenerate multiplet of states with differing azimuthal orbital angular
momentum quantum number 𝑚𝑙 and z-component spin quantum number 𝑚𝑠. When spin-orbit coupling is
turned on, this multiplet is split into a (2𝑙 + 2)-fold multiplet with 𝑗 = 𝑙 + 1/2, and a 2𝑙-fold multiplet with
𝑗 = 𝑙 − 1/2, where 𝑗 is the total angular momentum quantum number. The magnitude of spin-orbit splitting
in the f -shell of atomic Ce is about 0.3 eV between the 4𝑓5/2 and 4𝑓7/2 states. For core atomic states, the
spin-orbit splitting can be very large. For example, the 2𝑝1/2 and 2𝑝3/2 core states in W are split by 1351
eV. Spin-orbit effects substantively change bandgap values in heavy atom III-V semiconductors, and can lift
or change Fermi surface degeneracies, changing optoelectronic and thermoelectric properties of semicon-
ductors. Important effects on surfaces such as Kerr rotation in magneto-optical devices, or x-ray dichroism
involve spin-orbit splitting. A relativistic electronic structure theory is necessary to capture these effects. This
is accomplished by solving the Dirac equations, as discussed, for example, in the textbooks by Bjorken &
Drell [24] and by Messiah [25]. Within a spherically symmetric potential, the Dirac equations, like the non-

[23] J Andzelm and Erich Wimmer, “Density Functional Gaussian-Type-Orbital Approach to Molecular Geometries, Vibrations, and
Reaction Energies,” Journal of Physical Chemistry 96, no. 2 (1992): 1280.

[24] JD Bjorken and SD Drell, Relativistic Quantum Mechanics, McGraw-Hill, 1964. JD Bjorken and SD Drell, Relativistic Quantum
Fields, McGraw-Hill, 1965.

[25]
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relativistic Schrödinger equation, can be decomposed into radial and angular parts. As an illustration, we
show the radial equations.

−𝑑𝐹𝑛𝑙𝑗(𝑟)

𝑑𝑟
+

𝜅

𝑟
𝐹𝑛𝑙𝑗(𝑟) = [𝐸 −𝑚 + 𝑉𝑒𝑓𝑓 (𝑟)] (26)

𝑑𝐺𝑛𝑙𝑗(𝑟)

𝑑𝑟
+

𝜅

𝑟
𝐺𝑛𝑙𝑗(𝑟) = [𝐸 −𝑚 + 𝑉𝑒𝑓𝑓 (𝑟)] (27)

𝑠 𝑝 𝑑 𝑓
𝑙 = 0 1 2 3
𝑘 = −1 1,−2 2,−3 3,−4
𝑗 = 1

2
1
2 ,

3
2

3
2 ,

5
2

5
2 ,

7
2

(28)

𝜅 =

{︃
−(𝑙 + 1)

𝑙
and 𝑗 =

{︃
𝑙 + 1

2
𝑙 − 1

2

(29)

𝐹 and 𝐺 are called the “large” and “small” components of the radial wave function. The quantum numbers
𝑛 and 𝑙 are the principal energy quantum number and the orbital angular momentum quantum number,
respectively, and are unchanged from the non-relativistic case. 𝑗 is the total angular momentum quantum
number, which along with the orbital angular momentum quantum number, determines the spin-orbit-split
energy levels, and is used as a subscript to label states such as 2𝑝 1

2
, 2𝑝 3

2
and the 4𝑓 5

2
. The quantum

number 𝜅 is a convenient quantity used within relativistic computer programs. The radial part of the charge
density is constructed from the large and small components by,

𝜌(𝑟) =
∑︁[︀

|𝐹𝑛𝑙𝑗(𝑟)|2 + |𝐺𝑛𝑙𝑗(𝑟)|2
]︀

(30)

By neglecting the small part of the wavefunction, one can derive an approximate treatment of relativistic
effects in terms of two-component spinors. Expanding the resulting expression in powers of the fine structure
constant and keeping only terms to zero’th and first order yields a sum of two “scalar-relativistic” energy
terms and the spin-orbit term. The spin-orbit term represents the coupling of the magnetic field created by an
electron’s orbital motion to its own intrinsic magnetic moment. Relativistic effects on exchange and correlation
aren’t as easily analyzed.

The correct treatment of exchange and correlation in a fully relativistic density functional theory is a difficult
problem that has not yet been completely resolved. However, reasonable approximations are available.

Koelling & Harmon [26] proposed a semi-relativistic (or scalar-relativistic) treatment of these effects. This
approach involves an averaging over the spin-orbit splitting, but retains the kinematic effects. This restores
most of the simplicity of a non-relativistic method, but still gives an excellent representation of the core
electron distribution and the appropriate (spin-orbit averaged) energies of the valence electrons.

6 Atomic Partial Charges and Bader Charge Analysis

The concepts of atomic charges, partial charges, angular momentum and crystal field-split charge projec-
tions, and charge transfer are described in this section. These concepts are heavily used for describing and
understanding chemical bonding and reactions, not only for molecular systems, but also for surface and bulk
systems. The approaches available in MedeA VASP for using these concepts are briefly outlined here.

Atomic charges are not precisely defined, owing to the continuous nature of the electron density distribu-
tion, the quantum-mechanical uncertainty of electron positions, and the somewhat arbitrary nature of space
partitioning among neighboring atoms. Therefore, a quantitative analysis of atomic charges is usually only
possible with respect to a suitable reference system, such as bulk vs. surface, or bound vs. isolated atom,
etc.

In particular, the method used to partition space into volumes assigned to specific atoms and the interstitial
volume strongly affects the quantitative results of a charge analysis. Most straightforwardly, space is parti-
tioned into spheres of different radii around each atom position and the space in between. The VASP code

1. Messiah, “Quantum Mechanics”, North-Holland Publishing Company, Amsterdam, (1974)

[26] D D Koelling and B N Harmon, “A Technique for Relativistic Spin-Polarised Calculations,” Journal of Physics C: Solid State Physics,
1977.
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considers such a partitioning, and applies two different algorithms to compute atomic charges and charge
contributions from different angular momentum channels (s, p, d, f partial charges) inside the spheres:

i) Projections 𝑃 of the wave functions 𝑓𝑛𝑘 onto a set of spherical harmonics 𝑌𝑙𝑚 centered at each atomic site
N (which represents a natural basis set for atomic-like wave functions)

𝑃𝑁𝑙𝑚𝑛𝑘 =
⟨︀
𝑌 𝑁
𝑙𝑚|Φ𝑛𝑘

⟩︀
(31)

and the corresponding augmentation part. For this projection scheme the atomic sphere radii can be freely
chosen. MedeA applies covalent radii for this purpose as a default, which could be modified by setting the
RWIGS parameter in the Add to Input Tab of the MedeA VASP GUI.

ii) Alternatively, a fast projection scheme onto the PAW spheres is implemented, for which the radii cannot be
freely chosen but are fixed at the values of the PAW sphere radii for each atom.

Further details for applying these projection schemes are provided in the section on the DOS/Optic/Tensors
Tab of the MedeA VASP GUI and in the context sensitive Help panel.

The above projection schemes are based on necessarily somewhat arbitrary sphere radii, which strongly
affect the charge values. A number of schemes for charge analysis have been suggested that attempt to
overcome this limitation. Some of these schemes, such as Mulliken charges and Coulson charges, are
based on a population analysis of the wave functions applicable when basis functions centered on the atoms
are used. Other schemes, such as Bader charges, Hirshfeld charges, and Voronoi deformation density, are
based on a partitioning of the electron density distribution, and are therefore independent of the type of basis
functions employed.

The MedeA VASP GUI offers automated access to a Bader decomposition of space into areas attributed
to each atom [27]. The rule for how to bound the space assigned to each atom is based purely on the
total charge density as computed by VASP. The boundaries between atom volumes are so-called zero flux
surfaces 𝑆, i.e. surfaces on which the electron density 𝜌 satisfies the zero-flux boundary condition

∇𝜌(𝑟𝑆) · 𝑛(𝑟𝑆) = 0 (32)

for each point 𝑟𝑠 of the surface, where 𝑛(𝑟𝑠) is the unit vector normal to the surface at 𝑟𝑠. At each point of a
dividing surface, the gradient of the electron density has no component normal to the surface, i.e. the charge
density exhibits a local minimum perpendicular to the surface. A surface of local minimum charge density is
an intuitive and natural boundary with which to define the volume assigned to an enclosed atom. The regions
bounded by these dividing surfaces are called Bader regions. In most cases a Bader region will contain a
nucleus, but it is also possible that a Bader region may contain no nucleus. Algorithmically, the Bader regions
are identified by evaluating paths of steepest ascent confined to each grid point used for representing the
charge density. Those grid points that have paths leading to the same terminal maximum charge belong to
the same Bader region. The total charge within a Bader region is evaluated by the sum over all grid points
contained therein, and this value provides a very good measure of the total electronic charge of the enclosed
atom, the Bader charge.

The spatial extent of atoms may be defined by Bader regions, or arbitrarily by custom spheres, or by PAW
spheres. These values are used not only to attribute total charges, s, p, d, and f charge characters, and
magnetic moments, but also for calculating and displaying atom- and angular momentum-projected energy
densities of states.

7 Implicit Solvation Model

MedeA VASP enables users to simulate the effects of solvation in calculations for molecules, surfaces, ad-
sorption processes and surface reactions. Solvation effects can be included for single point total energies,
geometry optimizations and molecular dynamics simulations. Furthermore, the MedeA Phonon computa-
tional module for vibrational properties enables users to analyze surface processes under solvation. Using

[27] W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias”, Journal of Physics: Con-
densed Matter 21, (2009): 084204. E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, “An improved grid-based algorithm for
Bader charge allocation”, Journal of Computational Chemistry 28, (2007): 899-908. G. Henkelman, A. Arnaldsson, and H. Jónsson,
“A fast and robust algorithm for Bader decomposition of charge density”, Computational Materials Science 36, (2006): 254-360
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the MedeA Transition State Search module, one can generate energy profiles and reaction barriers for sol-
vated surface processes. The method called VASPsol was implemented in the group of Richard Hennig at
University of Florida [28].

There are two main approaches for studying solvation effects by means of quantum theory. One approach
treats the entire solute/solvent system in an atomistic and quantum mechanical manner, which extends the
ab initio approach explicitly to all solvent molecules. Due to the large number of solvent molecules often
required to model physical processes of interest, and the very large number of configurations needed to
extract converged equilibrium properties, such an explicit approach is computationally demanding and often
prohibitive. The alternative approach, as pursued by VASPsol, treats only the solute portion of the system
by ab initio methods, whereas these solute atoms interact with a solvent whose properties are simulated
using a continuum approach. The average over the solvent degrees of freedom is implicitly represented by
the properties of the solvent bath. Such an implicit solvation model is computationally much more tractable
and can be quite accurate, provided that all interactions between solute and solvent are considered with
appropriate detail.

There are three contributions to solvation effects taken into account by the VASPsol approach: The most
important contribution, especially for polar or ionic solutes and surfaces and polar solvents, is the electrostatic
interaction, which is modeled by the dielectric constant as an input parameter. If both the solute/surface and
the solvent are non-polar, the dispersive (Van der Waals) interactions might become more important than
electrostatics. Finally, if the solvent molecules are quite large, the energy for creating a cavity within the
solvent may become the dominant term, which is modeled by a surface tension parameter.

For the details of the derivation of the solvation model the user is referred to the publication of the VASPsol
implementation. The basic assumptions and approximations are outlined here. As a starting point, the
free energy 𝐴 of the combined solute/solvent system is written as the sum of two terms: 1) a functional,
denoted 𝐹 , of the total electron density and the thermodynamically averaged atomic densities of the solvent
molecules, and 2) a term describing the electrostatic energy of the system.

𝐴 = 𝐹 [𝑛𝑡𝑜𝑡, {𝑁𝑖(𝑟)}] +

∫︁
𝑑3𝑟𝑉𝑒𝑥𝑡(𝑟)

(︀∑︁
𝑖

𝑍𝑖𝑁𝑖(𝑟) − 𝑛𝑡𝑜𝑡(𝑟)
)︀

(33)

Here the total electron density is the sum of the electron density of the solute and the solvent 𝑛𝑡𝑜𝑡(𝑟) =
𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟) + 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑟), 𝑁𝑖(𝑟) is the thermodynamically averaged atomic density of all the solvent species 𝑖,
and 𝑉𝑒𝑥𝑡(𝑟) is the external potential of the solute nuclei. The ground state free energy 𝐴0 is determined by a
stepwise minimization of this functional, first over the solvent electron density, and then over the solute elec-
tron density. The usual Kohn-Sham density functional is separated into a solute term 𝐴𝐾𝑆 , and a remaining
term 𝐴𝑑𝑖𝑒𝑙 capturing all the interactions of the solute with the solvent as well as the internal energy of the
solvent. 𝐴𝑑𝑖𝑒𝑙 is minimized with respect to the average atomic densities of the solvent 𝑁𝑖(𝑟), finally yielding
the ground state free energy as,

𝐴0 = min
𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)

{𝐴𝐾𝑆 [𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟), 𝑉𝑒𝑥𝑡(𝑟)] −
∫︁

𝑑3𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟) + 𝐴𝑑𝑖𝑒𝑙 [𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟), 𝑉𝑒𝑥𝑡(𝑟)]} (34)

𝐴0 is a functional only of the electron density and the external potential of the solute. All solvent effects
are cast into the functional 𝐴𝑑𝑖𝑒𝑙, which is obtained from minimization over the solvent charge density and
the average atomic densities of the solvent. As such, 𝐴0 represents a continuum model for the solvent, the
ground state of which is determined by the solute electronic structure.

The expression (34) is exact. However, approximations for 𝐴𝑑𝑖𝑒𝑙 are needed to enable practical computations.
One approximation employed for this purpose treats electrostatic solute-solvent interactions. It is introduced
by a term included into the functional 𝐴𝑑𝑖𝑒𝑙 to account for the electrostatic interaction between the solute
electronic structure and the charge distribution induced in the solvent. Assuming a linear dependence of the
solvent polarization on the electric field close to the solute, the solvent polarization can be described by the
local relative permittivity, that is, the local dielectric function of the solvent, 𝑒(𝑟). In addition, to account for
cavitation and dispersion, which is a dominant effect in the first solvation shell, an interface term proportional
to the area accessible to the solvent is introduced into the functional 𝐴𝑑𝑖𝑒𝑙. This is the free energy contribution,

𝐴𝑐𝑎𝑣 = 𝜏

∫︁
𝑑3𝑟|∇𝑆| (35)

[28] K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, “Implicit solvation model for density-functional study
of nanocrystal surfaces and reaction pathways”, Journal of Chemical Physics 140, (2014): 084106
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Here 𝜏 is an effective surface tension parameter characterizing the effects of cavitation, dispersion and re-
pulsion between solvent and solute not covered by electrostatics, and 𝑆(𝑟) is a cavity shape function. Inside
the dielectric cavity the relative permittivity is assumed to be the vacuum value 𝜖(𝑟) = 1. Outside the cavity,
the bulk value of the solvent is reached with the induced charges being placed at the surface. Furthermore,
a diffuse cavity is assumed, i.e. the relative permittivity is smoothly varying as a functional of the electronic
charge density of the solute, which ensures that the derivatives of the energy functional will be continuous.
The following functional dependence of the relative permittivity of the solvent on the solute electronic charge
density is assumed,

𝜖(𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)) = 1 + (𝜖𝑏 − 1)𝑆(𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)) (36)

where 𝑒𝑏 is the relative permittivity (dielectric constant) of the bulk solvent, and the cavity shape function is,

𝑆(𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)) =
1

2
𝑒𝑟𝑓𝑐

{︃
𝑙𝑛𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)

𝑛𝑐

𝜎
√

2

}︃
(37)

The parameter 𝑛𝑐 defines the value of the electron density at which the cavity forms and the parameter 𝜎
determines the width of the diffuse cavity. Within the range given by 𝜎 the relative permittivity is ramped up
smoothly from the vacuum value of 1 inside the solute to 𝜀𝑏 inside the bulk solvent, and for 𝜀𝑏 → 1 the free
energy becomes the vacuum value. This smooth variation mimics the dielectric response of the first solvation
shell, in which the relative permittivity is known to be smaller than in the bulk, due to the higher electric field
near the solute (dielectric saturation).

Based on these approximations to electrostatic, cavitational and dispersive interactions, the self-consistent
solution of the Kohn-Sham equations for the solute/solvent system has become computationally practicable.
From the solute charge density the combined electrostatic potential due to the electronic and nuclear charges
of the solute in a polarizable medium is obtained by iteratively solving a generalized Poisson equation

∇ · [𝜀(𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟))∇𝜑(𝑟)] = −4𝜋{𝑁𝑠𝑜𝑙𝑢𝑡𝑒(𝑟) − 𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)} (38)

where 𝑁𝑠𝑜𝑙𝑢𝑡𝑒(𝑟) are the effective core charges approximated by Gaussians and 𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟) is the valence
electronic charge density of the solute. The Kohn-Sham Hamiltonian includes two additional terms resulting
from solvation, an electrostatic and a cavitation term

𝑉𝑒𝑙 = −𝑑𝜀(𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟))

𝑑𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)

|∇𝜑|2

8𝜋
𝑉𝑐𝑎𝑣 = 𝜏

𝑑|∇𝑆|
𝑑𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)

(39)

The resulting energy expression has two additional related contributions accounting for electrostatic interac-
tions and cavitation,

𝐸𝑒𝑙 = − 1

8𝜋

∫︁
𝑑3𝑟𝜀 (𝑛𝑠𝑜𝑙𝑢𝑡𝑒(𝑟)) |∇𝜑|2 𝐸𝑐𝑎𝑣 = 𝜏

∫︁
𝑑3𝑟|∇𝑆| (40)

In addition, the Hellman-Feynman force expression requires two correction terms due to solvation.

The parameters of this implicit solvation model can be set in the INCAR file as input parameters to the
VASP code. The most prominent parameter, which is usually known from experimental data, is the bulk
relative permittivity (or dielectric constant) of the solvent, 𝜀𝑏, which correspond to the EB K keyword of VASP,
and can be set directly in the MedeA VASP GUI. The other parameters, i.e. 𝑛𝑐 corresponding to NC K, 𝑆
corresponding to SIGMA K, and 𝜏 corresponding to the TAU keyword, can be set from the Add to Input
tab. Unfortunately, these parameters are not directly informed by experimental data. The default parameters
are suitable for water: the dielectric constant 𝜀 = 78.4 is set from experiment, whereas the shape function
parameters 𝑛𝑐 and 𝜎 and the effective surface tension 𝜏 are obtained from a fit to experimental data on
solvation energies of molecules in water: 𝑛𝑐 = 0.0025 Å-3, 𝜎 = 0.6, and 𝜏 = 0.525 meV Å-2.
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